图像处理
文章平均质量分 71
图像处理是指对图像进行分析、加工、和处理,使其满足视觉、心理或其他要求的技术。图像处理是信号处理在图像领域上的一个应用。目前大多数的图像均是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。
图像处理是信号处理的子类,另外与计算机科学、人工智能等
Dean.song
脚踏实地
展开
-
一般颜色直方图
颜色直方图是一种用于图像处理和分析的图表,它可以显示图像中不同颜色的数量。通常,颜色直方图会将颜色分成几个色调区间,每个区间对应一个条形图,其中条形图的高度表示该色调区间中的像素数量。通过颜色直方图,你可以快速了解图像的颜色分布情况。原创 2023-01-08 17:00:17 · 1912 阅读 · 0 评论 -
图像频域滤波(理想低通滤波)
然后,(np.amax(I_back)-np.amin(I_back))是I_back的最大像素值减去最小像素值,这样得到的值就是I_back的像素值的数值范围,即最大值与最小值之差。首先,(I_back-np.amin(I_back))将I_back的每个像素值减去最小像素值,这样可以使得I_back的最小像素值为0。最后,将I_back的每个像素值除以像素值的数值范围,就可以将I_back的像素值缩放到0~1之间。这一句的作用是将反演得到的图像矩阵I_back的像素值缩放到0~1之间。原创 2023-01-08 11:16:35 · 2227 阅读 · 0 评论 -
混合空间增强
具体流程如上图,由于人体全身骨骼扫描图像灰度动态范围很窄,并且有很大的噪声内容,使用单一滤波对其增强效果一般。混合图像增强是一种图像处理技术,用于在不损失图像细节的情况下增强图像的对比度和亮度。图像全身骨骼扫描,图2为原始图像拉普拉斯变换后的结果,细节信息丰富,同时噪音变多。综合利用平滑滤波,锐化滤波,灰度拉伸等技术对图像进行处理,得到更为理想的效果。将图3与图5相加得到图6,发现图6的强边缘优势和可见噪声相对减少。图4进行空间平滑滤波得到图5,保留图像边缘信息,同时减小了噪声。图像的大部分细节更清晰。原创 2023-01-06 15:43:07 · 1486 阅读 · 0 评论 -
二阶微分算子与反锐化屏蔽
将原图和Laplace图像以一定比例叠加,可得拉普拉斯锐化增强图像,与之前文章的一阶微分算子相比,二阶微分对灰度变化强烈的地方更敏感,更能突出图像纹理;原始图像f(x,y)平滑处理后得到模糊图像g(x,y),原始图像减去模糊图像得到差值图像d(x,y),以一定比例叠加到原始图像,得到锐化增强图像,达到反锐化屏蔽效果。原始图像加上插值图像可以得到瑞华增强图像。对原始图像使用拉普拉斯算子进行空间滤波可得到拉普拉斯图像,将拉普拉斯图像以一定比例叠加到原始图像可对原始图像进行拉普拉斯锐化增强。原创 2023-01-06 13:15:10 · 678 阅读 · 0 评论 -
图像锐化处理之一阶微分算子
图像锐化是通过增强图像的边缘和细节来提高图像的清晰度的操作。这种操作通常用于将模糊或不清晰的图像改进为更清晰的图像。由于微分是对函数局部变化率的一种描述,因此图像锐化算法的实现可基于空间微分。原创 2023-01-05 16:56:35 · 2013 阅读 · 0 评论 -
数字图像处理实验(直方图均衡化&规定化)
通常情况下,图像的直方图会呈现不平衡的状态,即图像的某些灰度级出现的次数很多,而其它灰度级出现的次数很少。通常情况下,图像的直方图会呈现不平衡的状态,即图像的某些灰度级出现的次数很多,而其它灰度级出现的次数很少。直方图规定化的具体做法是,首先计算出图像的直方图,然后根据直方图计算出每个灰度级的累计分布函数,再根据累计分布函数计算出新的灰度级,最后将图像中每个像素的灰度级替换为对应的新灰度级。图像均衡化的目的是提高图像的对比度,而直方图规定化的目的是使图像的直方图呈现特定的形状。函数来对图像进行均衡化。原创 2023-01-05 14:07:05 · 3566 阅读 · 0 评论 -
图像平滑处理
平滑处理是指在某些数学和统计分析中,对于原始数据做出拟合,并生成更平滑的数据。这通常是为了抑制原始数据中的离群点或噪声,使得数据更具可读性和可解释性。在图像处理中常用于模糊处理和降低噪声。平滑滤波器使用给定邻域内的像素平均灰度值或逻辑运算值代替原始图像中像素的灰度值,这种处理降低了图像灰度的“尖锐”变化。但图像边缘也是图像灰度尖锐变化带来的特性,因此平滑空间滤波器有边缘模糊化的负面效应。平滑滤波器可分为平滑线性滤波器和平滑非线性滤波器。原创 2023-01-04 15:43:05 · 2352 阅读 · 0 评论 -
空间滤波基础
空间滤波是一种图像处理技术,它通过对每个像素周围的像素进行加权平均来平滑图像。这个过程的基本思想是,将每个像素的灰度值与它周围像素的灰度值进行加权平均,然后用平均值来替换原来的像素值。空间滤波器的大小和形状决定了每个像素的加权因子,这些因子决定了每个像素对最终结果的贡献程度。通常使用矩形或方形的空间滤波器,但也可以使用其他形状的滤波器,如圆形或椭圆形。空间滤波可以用来去除图像中的噪点或平滑图像,但是它也会模糊图像的细节。因此,在使用空间滤波时,必须权衡滤波器的大小和形状以及要达到的效果之间的平衡。原创 2023-01-03 17:13:20 · 2277 阅读 · 0 评论 -
基于彩色的图像分割
图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。从数学角度来看,图像分割是将数字图像划分成互不相交的区域的过程。图像分割的过程也是一个标记过程,即把属于同一区域的像素赋予相同的编号。原创 2023-01-02 21:44:27 · 5545 阅读 · 1 评论 -
彩色图像灰度化
灰度图像能以较少的数据表征图像的大部分特征,因此在某些算法的预处理阶段需要进行彩色图像灰度化,以提高算法的效率。将彩色图像转化为灰度图像的过程称为彩色图像灰度化。最大灰度化方法将彩色图像中像素的R分量,G分量和B分量三个数值的最大值作为灰度图的灰度值。由于人眼对绿色的敏感度最高,对蓝色敏感度最低,因此可以根据重要性对R,G,B三个分量进行加权平均,得到比较合理的灰度值。常用RGB图像灰度化,在RGB模型中,位于空间位置(x,y)的像素点的颜色用该像素点的R(x,y)G(x,y),B(x,y)三个分量表示。原创 2023-01-02 17:44:40 · 2347 阅读 · 0 评论 -
彩色图像的颜色空间
在RGB颜色空间上,位于空间位置(x,y)的像素点的颜色用该像素点的R(x,y),G(x,y),B(x,y)三个数值表示。色调H由角度表示,反映该颜色最接近哪个光谱波长。在色环中,0度表示红色光谱,120度表示绿色光谱,240度表示蓝色光谱。为方便描述,我们将3个分量都进行归一化处理,三元组每个数值表示红,绿,蓝三者的比例。(0,0,0)代表黑色,(1,1,1)代表白色,(1,0,0)代表红色,以此类推。RGB颜色空间基于三维直角坐标系,包括R,G,B三个原始光谱分量,分别描述红色,绿色,蓝色的亮度值。原创 2023-01-01 21:43:13 · 882 阅读 · 0 评论 -
伪彩色图像处理
伪彩色处理(pseudocoloring)是指根据一定准则给灰度值赋予彩色值的处理。宏观来说就是将黑白图像转化为彩色图像,或者是将单色图像变换成给定彩色分布的图像。由于人眼对彩色的分辨能力远远高于对灰度的分辨能力,所以将灰度图像转化成彩色表示,就可以提高对图像细节的辨别力。因此,伪彩色处理的主要目的是提高人眼对图像的细节分辨能力,以达到图像增强的目的。原创 2023-01-01 16:10:15 · 6467 阅读 · 0 评论 -
图像简单运算
图像运算是以图像为单位对图像进行数学操作,运算对象以像素点为基本单位,运算结果为一幅灰度分布与原图像不同的新图像。原创 2022-12-31 17:15:31 · 620 阅读 · 0 评论 -
图像属性操作
数字图像处理本质是对多维矩阵的操作。按照处理对象不同,可分为黑白图像处理,灰度图像处理,彩色图像处理。按照处理方法分为空间域处理和频域处理。按照策略分为全局处理和局部处理。原创 2022-12-30 17:24:36 · 524 阅读 · 2 评论 -
图像采样与量化
数字图像有两个重要属性:空间位置(x,y)以及响应值I(x,y)。数字图像中像素的空间位置及响应值都是离散值,传感器输出连续电压信号。为了产生数字图像,需要把连续的数据转换为离散的数字化形式。采用的方式是图像量化与采样。原创 2022-12-29 21:48:24 · 2374 阅读 · 2 评论