2021-08-15


前言

本篇主要介绍几种数据结构的简单应用,并附有例题


一、并查集

并查集是一种维护一系列不相交集合的数据结构,可以帮我们处理一些关于集合交互的问题

入门例题 hdu-1213

这道题的意思大概就是有相同认识的人就坐同一张桌子,最后看看需要多少张桌子,我们考虑用一个并查集来维护,把有相同认识的人放进一个集合,最后只需要统计集合数目就可以解决了

下面附上AC代码:

#include<iostream>
#define ll long long
#define mk make_pair
using namespace std;
const int inf=0x3f3f3f3f;
const int maxn=1005;
int pre[maxn];//储存各个元素的代表元素 
void init()
{
	for(int i=1;i<=maxn;i++)
	{
		pre[i]=i;
	}
}//初始化每个集合的代表元素为自己 
int find(int x)
{
	return pre[x]==x?x:pre[x]=find(pre[x]);
}//查找这个元素所在的集合的代表元素 
void Union(int x,int y)
{
	x=find(x);
	y=find(y);
	if(x!=y)
	{
		pre[x]=pre[y]; 
	}
}//把俩个集合合并在一起 
int main(void)
{
	int k;
	cin>>k;
	
	int n,m,x,y;
	for(int i=1;i<=k;i++)
	{
		cin>>n>>m;
		init();
		for(int j=0;j<m;j++)
		{
			cin>>x>>y;
			Union(x,y);
		}
		int ans=0;
		
		for(int j=1;j<=n;j++)
		{
			if(pre[j]==j)//有多少个集合代表元素还是自己的,答案就是多少 
			ans++;
		}
		cout<<ans<<endl;
	}
	



 	return 0;
}

二、线段树

线段树是一种非常有用的数据结构,可以用于维护区间内的很多信息,用处很多

入门例题 poj-3264

本题可以属于线段树的单点修改和区间查询,维护各个区间内的最大值最小值,最后相减即可,可以让大家熟悉线段树的写法和基本用处

下面附上AC代码

#include<iostream>
#include<string>
#include<cstring>
#include<algorithm>
#define ll long long
#define mk make_pair
using namespace std;
const int maxn=200005;
const int inf=0x3f3f3f3f;
int m[maxn<<2],n[maxn<<2],a[maxn],tr[maxn<<2];//n数组维护区间的最小值,m数组维护区间的最大值 
void pushup(int rt)
{
	m[rt]=max(m[rt<<1],m[rt<<1|1]);
	n[rt]=min(n[rt<<1],n[rt<<1|1]);
}//向上更新区间的最大最小值 
void build(int l,int r,int rt)
{
	if(l==r)
	{
		m[rt]=a[l];
		n[rt]=a[l];
		return;
	}
	int mid=l+r>>1;
	build(l,mid,rt<<1);
	build(mid+1,r,rt<<1|1);
	pushup(rt);
}//递归建树 
int mi,ma;//储存查询区间的最大值和最小值 
void query(int l,int r,int ql,int qr,int rt)
{
	if(l>=ql&&r<=qr)
	{
		mi=min(mi,n[rt]);
		ma=max(ma,m[rt]);
		return;
	}
	int mid=l+r>>1;
	if(ql<=mid)query(l,mid,ql,qr,rt<<1);
	if(qr>mid)query(mid+1,r,ql,qr,rt<<1|1);
}
int main(void)
{
	int x,y;
	cin>>x>>y;
	
	for(int i=1;i<=x;i++)
	{
		scanf("%d",&a[i]);
	 }
	 build(1,x,1);
	 int xx,yy;
	for(int i=0;i<y;i++)
	{
		scanf("%d%d",&xx,&yy);
		mi=inf;ma=0;
		query(1,x,xx,yy,1);
		printf("%d\n",ma-mi);
	}
 	return 0;
}

三、树状数组

树状数组是一种十分巧妙的数据结构,运用了二进制的性质来模拟树形结构。

入门例题洛谷p3374(树状数组模板题)

模板题没啥好说的,单点修改然后区间查询就行了,主要是为了熟悉树状数组的写法

附上模板代码

#include<iostream>
#include<string>
#include<cstring>
#include<algorithm>
#define ll long long
#define mk make_pair
using namespace std;
const int maxn=10005;
const int inf=0x3f3f3f3f;
int n,tr[maxn],m;
int lowbit(int x)
{
	return x&(-x);
}//树状数组的灵魂,获取x在二进制下最低位的1,所有的操作都根据这个函数进行 
void add(int x,int c)
{
	while(x<=n)
	{
		tr[x]+=c;
		x+=lowbit(x);
	}
}//单点修改后向上更新 
int query(int x)
{
	int ans=0;
	while(x!=0)
	{
		ans+=tr[x];
		x-=lowbit(x);
	}
	return ans;
	
}//查询区间[1-x]的区间和 
int main(void)
{
	cin>>n>>m;
	
	int k;
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&k);
		add(i,k);
	}
	
	int x,y,z;
	for(int i=1;i<=m;i++)
	{
		scanf("%d%d%d",&x,&y,&z);
		if(x==1)add(y,z);
		if(x==2)cout<<query(z)-query(y-1)<<endl;//俩个查询相减就是所要求的区间和 
	}
	

 	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值