Python神经网络编程(TR) (2)

1. 2一台简单的预测机

人对问题的思考是这样的

问题
思考
答案

计算机,实质上是经过了包装的计算器,对问题的思考是这样的

输入
计算
输出

计算机可以完成3x4这样的简单运算,这没什么了不起的,甚至更大的数据也没什么。

那么让我们增加下难度,去进行千米和英里之间的转换。

100千米=62.137英里,这是我们所知道的,同时我们还可以知道,“英里=千米×C”。

上过小学二年级的小朋友都知道,这个C是可以根据已知数据,通过简单的乘除运算而得到,但是wait wait,请等一下,在这里我想请你用观察实验的方式来进行探究。

让我们随意取一个值,就C=0.5吧

100千米
英里=千米x0.5
50英里

可以看到,在C=0.5时,误差值为62.137-50=12.137这个误差值还是比较大的,所以我们可以适当扩大下C的值,再次我们令C=0.6

100千米
英里=千米x0.6
60英里

这次似乎要比上更加出色了,只有2.137的误差,而且我们好像还可以接受这样的误差,但是为什么我们不可以继续试下去呢,好,就让我们令C=0.7

100千米
英里=千米x0.7
70英里

我们可以得知 误差值=62.175-70=-7.825很显然,0.7这个数是偏大的,而0.6在我们可以接受的范围之内。但是我们为什么不把0.6再扩大一点点呢。
我们让C=0.61

100千米
英里=千米x0.61
61英里

我们可以看到这次我们只差1.175,这很棒!我们还可以在继续缩小,当然这样也很不错。

我们刚才就是粗略的浏览了一下神经网络中学习的核心过程,我们训练机器,使其越来越接近正确值,这种方法就叫做迭代。

最最最重要的事是:点赞评论转发!!!

©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页