牛客第六场 题解

比赛传送门
作者: fn


签到题

I题 Intervals on the Ring 戒指上的间隔

题目大意
给定环上的一组区间,构造环上的另外一组区间使得新区间的交集是给定的区间的并集。

考察内容
构造,数学知识

分析
先求出给定的区间的并,包括的数字用数组标记为1。对所有的 0 用一个补集表示,这些补集的交集即定的区间的并。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e6+10;
ll n,m,a[N];
int b[N];
int main(){ // AC
	ios::sync_with_stdio(0); cin.tie(0);
	int t; cin>>t;
	while(t--){
		ll cnt=0;
		cin>>n>>m;
		memset(b,0,sizeof(b[1])*(n+1));
		
		int l,r;
		for(int i=1;i<=m;i++){
			cin>>l>>r;
			if(l<=r){
				for(int i=l;i<=r;i++){
					if(b[i]==0){
						b[i]=1;
						cnt++;
					}
				}
			}
			else{ //
				for(int i=l;i<=n;i++){
					if(b[i]==0){
						b[i]=1;
						cnt++;
					}
				}
				for(int i=1;i<=r;i++){
					if(b[i]==0){
						b[i]=1;
						cnt++;
					}
				}
			}
		}
		cout<<n-cnt<<endl;
		for(int i=1;i<=n;i++){
			if(b[i]==0){
				cout<<(i+1-1)%n+1<<' '<<(i-1+n-1)%n+1<<endl;
			}
		}
	}
	return 0;
}

基本题

F题 Hamburger Steak 汉堡排

题目大意
有 𝑛 个汉堡排和 𝑚 个锅,给出每个汉堡排需要煎的时间 𝑡 𝑖 𝑡_{𝑖} ti 。一个汉堡排可以在一口锅中煎好,也可以分成两次在两个锅中煎好。一个锅同时只能煎一个汉堡排,一个汉堡排同时只能放到一个锅中。求一个方案使煎好所有的汉堡排所需要的时间最少。

考察内容
贪心

分析
为了满足题目要求,我们需要保证所有锅的时间和大于等于所有汉堡排的时间和,以及耗时最长的汉堡排不会在同一时刻分到两个锅中(耗时小于它的自然也就满足条件),于是最小耗时为 𝑇 = m a x ⁡ ( m a x ⁡ ( 𝑡 𝑖 ) , ⌈ ∑ 𝑡 𝑖 m ⌉ ) 𝑇=max⁡(max⁡(𝑡_{𝑖} ),⌈\frac{∑𝑡_{𝑖}}{m}⌉) T=max(max(ti),mti)
知道了最小耗时 𝑇,就可以贪心地将每个锅的时间 𝑇 依次分配给每个汉堡排,当前这个锅没煎完的部分再由下个锅煎即可。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e5+10;
ll n,m,t[N];
ll a[N];

int main(){ 
	ios::sync_with_stdio(0); cin.tie(0);
	cin>>n>>m;
	
	ll S=0;
	ll tmax=0;
	for(int i=1;i<=n;i++){
		cin>>t[i];
		S+=t[i];
		tmax=max(tmax,t[i]);
	}
	
	ll T=max(tmax,(S+m-1)/m);
	
	int p=1;
	for(int i=1;i<=n;i++){
		while(a[p]>=T) p++;
			
		if(a[p]+t[i]<=T){
			cout<<"1 "<<p<<' '<<a[p]<<' ';
			a[p]+=t[i];
			cout<<a[p]<<endl;
			
			if(a[p]==T)p++; //
			continue;	
		}	
		
		// 分两半 
		cout<<"2 ";
		cout<<p+1<<' '<<"0 "<<t[i]-(T-a[p])<<' '; //
		cout<<p<<' '<<a[p]<<' '<<T<<endl;  //
		
		p++;
		a[p]=t[i]-(T-a[p-1]); //
		a[p-1]=T; //
	}
	return 0;
}

进阶题

H题 Hopping Rabbit 跳跳兔

题目大意
平面上有 𝑛 个矩形,给定 𝑑,需要找到一个位置 (𝑥,𝑦),使得所有 (𝑥+𝑘𝑑,𝑦+𝑘𝑑) 均不落在矩形中。

考察内容
扫描线,线段树

分析
由于能到的位置是周期重复的,我们可以将所有 ( 𝑘 1 𝑑 , 𝑘 2 𝑑 ) (𝑘_{1} 𝑑,𝑘_{2} 𝑑) (k1d,k2d) ( 𝑘 1 𝑑 + 𝑑 , 𝑘 2 𝑑 + 𝑑 ) (𝑘_{1} 𝑑+𝑑,𝑘_{2} 𝑑+𝑑) (k1d+d,k2d+d) 范围内的图形移动至 (0,0) 到 (𝑑,𝑑) 范围内求并。如果说最终 (0,0) 到 (𝑑,𝑑) 的范围内没有被完全覆盖,那么小兔从没有被覆盖到的点出发即可。如果被完全覆盖了,那么就没有合法的答案。

这个问题最终可以转化成将 𝑛 个矩形移动至 (0,0) 到 (𝑑,𝑑) 范围内求并,是扫描线的典型应用。根据矩形的位置和大小,将其移动至 (0,0) 到 (𝑑,𝑑) 范围内时可能会拆成 2 甚至 4 个矩形。
之后则是采用扫描线的方式维护矩形,可以参考"矩形面积并"。

由于此题需要输出方案,我们可以在线段树上维护一个覆盖次数的最小值,当扫描到某一行发现最小值为 0 时,说明这一行存在某个位置没有被覆盖完全,然后枚举这一行所有位置找到覆盖次数为 0 的即可。

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
struct A{
	int yl,yr;
};
struct Seg{
	int mi[N*4],lazy[N*4],L,R,W;
	void update(int x){
		mi[x]=min(mi[x<<1],mi[x<<1|1]);
	}
	void pushdown(int x){
		if(lazy[x]){
			lazy[x<<1]+=lazy[x],mi[x<<1]+=lazy[x];
			lazy[x<<1|1]+=lazy[x],mi[x<<1|1]+=lazy[x];
			lazy[x]=0;
		}
	}
	void change(int x,int l,int r){
		if(l>=L&&r<=R){mi[x]+=W,lazy[x]+=W;return;}
		pushdown(x);
		int mid=(l+r)>>1;
		if(L<=mid)change(x<<1,l,mid);
		if(R>mid)change(x<<1|1,mid+1,r);
		update(x);
	}
	int query(int x,int l,int r){
		if(l==r)return l;
		int mid=(l+r)>>1;pushdown(x);
		if(!mi[x<<1])return query(x<<1,l,mid);
		else return query(x<<1|1,mid+1,r);
	}
	int query1(int n){
		if(mi[1])return -1;
		return query(1,1,n)-1;
	}
}S;
vector<A> V[N],V1[N];
int n,d;
void cal(int &x){
	x=(x%d+d)%d;
}
void op1(int x1,int x2,int y1,int y2){
	if(x1>=x2||y1>=y2)return;
	V[x1].push_back(A{y1+1,y2});
	V1[x2].push_back(A{y1+1,y2});
}
void op(int x1,int x2,int y1,int y2){
	if(y2-y1>=d){op1(x1,x2,0,d);return;}
	cal(y1),cal(y2);
	if(y1>y2){op1(x1,x2,y1,d),op1(x1,x2,0,y2);}
	else op1(x1,x2,y1,y2);
}
int main(){
	int x1,y1,x2,y2;scanf("%d%d",&n,&d);
	for(int i=0;i<n;i++){
		scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
		if(x2-x1>=d){op(0,d,y1,y2);continue;}
		cal(x1),cal(x2);
		if(x1>x2){op(x1,d,y1,y2),op(0,x2,y1,y2);}
		else op(x1,x2,y1,y2);
	}
	for(int i=0;i<d;i++){
		for(auto x:V[i])S.L=x.yl,S.R=x.yr,S.W=1,S.change(1,1,d);
		for(auto x:V1[i])S.L=x.yl,S.R=x.yr,S.W=-1,S.change(1,1,d);
		int y=S.query1(d);
		if(y!=-1){printf("YES\n%d %d\n",i,y);return 0;}
	}
	puts("NO");
	return 0;
}

D题 Gambling Monster 赌怪

题目大意
有一个转盘,每次转动得到 0~𝑛−1 (𝑛 是 2 的幂)的概率分别给出。最开始你有一个数 𝑥=0,每次转动转盘得到一个数 𝑦,如果 𝑥⊕𝑦>𝑥,就令 𝑥=𝑥⊕𝑦,否则 𝑥 不变。求使 𝑥=𝑛−1,期望转动转盘的次数。

考察内容
概率与数学期望,dp,FWT(快速沃尔什变换)cdq分治

分析

  1. 公式推导

设 𝑃(𝑦) 表示转到 𝑦 的概率,𝐸(𝑥) 表示从 𝑥 出发到 𝑛−1 的期望,𝑆(𝑥) 表示转动一次转盘 𝑥 发生变化(即变大)的概率。
E ( x ) = [ E ( x ) + 1 ] [ 1 − S ( x ) ] + ∑ x < z 且 x ⊕ y = z [ E ( z ) + 1 ] P ( y ) E(x)=[E(x)+1][1-S(x)] + \sum\limits_{x<z 且 x⊕y=z} [E(z)+1]P(y) E(x)=[E(x)+1][1S(x)]+x<zxy=z[E(z)+1]P(y)
S ( x ) = ∑ x ⊕ y > x P ( y ) S(x)=∑\limits_{x⊕y>x} P(y) S(x)=xy>xP(y)

  1. 公式计算

𝑄(𝑥) 和 𝐸(𝑥)都是异或卷积的形式,并且只有一个方向(𝑦<𝑥 或 𝑥<𝑧)的贡献。于是可以考虑 cdq 分治套 fwt 解决。

对于 𝑆(𝑥),分析发现,我们找到 𝑦 在二进制下的最高位的 1,判断 𝑥 在二进制下的对应位是否为 0,若是, 𝑦 才对 𝑥 有贡献,反之则无贡献。于是按最高位统计贡献即可。

单组数据时间复杂度 𝑂 ( 𝑛 l o g 2 ⁡ 𝑛 ) 𝑂(𝑛 log^2⁡𝑛 ) O(nlog2n)

#include<bits/stdc++.h>
using namespace std;

const int N=(1<<16)+5;
const int mod=1000000007;
typedef long long ll;
int ksm(ll a,int b,int c=1){ // 快速幂 
	for(;b;b/=2,a=a*a%mod)
		if(b&1)c=c*a%mod;
	return c;
}

void fwt(int*a,int*b,int n,int flag=0){
	for(int i=0;i<n;++i)b[i]=a[i];
	for(int i=0;(1<<i)<n;++i){
		int t=1<<i;
		for(int j=0;j<n;j+=t<<1){
			int*f=b+j,*g=b+j+t;
			for(int k=0;k<t;++k){
				int s=g[k];
				g[k]=(f[k]-s+mod)%mod;
				f[k]=(f[k]+s)%mod;
			}
		}
	}
	if(flag){
		int iv=ksm(n,mod-2);
		for(int i=0;i<n;++i)b[i]=(ll)b[i]*iv%mod;
	}
}
int f[N],g[N],a[N],b[N],c[N];
void solve(int l,int r){
	if(l==r){
		if(g[l])
			f[l]=ksm(g[l],mod-2,f[l]+1);
		return;
	}
	int mid=(l+r)/2;
	solve(mid+1,r);
	int t=l^(mid+1);
	fwt(a+t,b,mid+1-l);
	fwt(f+mid+1,c,mid+1-l);
	for(int i=0;i<mid+1-l;++i)
		c[i]=(ll)c[i]*b[i]%mod;
	fwt(c,c,mid+1-l,1);
	for(int i=l;i<=mid;++i)
		f[i]=(f[i]+c[i-l])%mod,
		g[i]=(g[i]+b[0])%mod;
	solve(l,mid);
}
int T,n;
int main(){
	ios::sync_with_stdio(0);cin.tie(0);
	for(cin>>T;T --> 0;){
		cin>>n;int sum=0;
		for(int i=0;i<n;++i)cin>>a[i],sum+=a[i],f[i]=g[i]=0;
		sum=ksm(sum,mod-2);
		for(int i=0;i<n;++i)a[i]=(ll)sum*a[i]%mod;
		solve(0,n-1);
		cout<<f[0]<<'\n';
	}
	return 0;
}

  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值