蓝桥(6)

士兵排队

描述

一个军官正在指挥他的士兵们排队。已知士兵有K行(1 ≤ K ≤ 20),每行最多N人(2 ≤ N ≤ 10000)。士兵必须按照身高

从高到矮排队,如果一个士兵比左边一个士兵高,则他俩交换,每一行不存在两个士兵身高相同。

输入给出每一行士兵在该行里面的排名,军官想要找到哪一行士兵交换次数最多。

输入

第一行包含两个整数N和K,用空格分开

接下来的K行每行包含N个不同的整数(从1到N),该整数表示每列士兵所在行的身高(1表示最高,N表示最矮)

输出

输出需要交换次数最大的列号。如果存在多个这样的列号,输出其中的最小值。

输入样例 1

3 3
1 2 3
2 1 3
3 2 1

输出样例 1

3

分析:

归并排序求出原序列a的逆序对个数就是冒泡排序需要交换元素的次数

#include<iostream>
#include<algorithm>
using namespace std;
const int N=1000010;
int q[N];
int tmp[N];
long long merge_sort(int q[],int l,int r){
	if(l>=r) return 0;
	int mid = l+r >>1;
	long long res = merge_sort(q,l,mid)+merge_sort(q,mid+1,r);
	int k=0,i=l,j=mid+1;
	while(i<=mid && j<=r)
		if(q[i] <= q[j]){
			tmp[k++] = q[i++];
		}
		else{
			res+=mid-i+1;
			tmp[k++] = q[j++];
		} 
	while(i<=mid) tmp[k++] = q[i++];
	while(j<=r) tmp[k++] = q[j++];
	for(i=l,j=0;i<=r;i++,j++){
		q[i] = tmp[j];
	}
	return res;
}

int main(){
	int n,k;
	int res; 
	cin >> n >> k;
	int max=0;
	for(int t=1;t<=k;t++){
		for(int i=1;i<=n;i++){
			cin >> q[i];
		}
		int ans;
		ans = merge_sort(q,1,n);
		if(ans > max){
			max = ans;
			res = t;
		}
		for(int i=0;i<n;i++){
			q[i]=0;
			tmp[i]=0; 
		}
	}
	cout << res;
}


点蜡烛

描述

RB过生日啦……信息组的成员都来到了机房给RB过生日,就在RB插完N根蜡烛准备点蜡烛时,RB神奇的发现,每隔一秒,RB插下的N根蜡烛就会按照一定规律变换顺序,可是有强迫症的RB一定要让蜡烛按原本排好的顺序点燃,所以RB只能等,可是RB又赶着时间去上课,那么问题来了,RB最快几秒钟后可以点蜡烛呢?(假设RB的打火机可以在1ms之内把所有蜡烛全部点燃)。

输入

输入文件的第一行包含一个整数N(0<N<=10000),表示蜡烛的总数。初始编号为1,2,3,4……N

接下来N行,每行一个正整数ai,表示左起第i根蜡烛接下来出现在左起第ai个位置上。

输出

仅包括一行,一个正整数M,表示RB的最少等待时间

输入样例 1

5
2
3
4
5
1

输出样例 1

5

分析:
即求一个数列按照一定规律变化,经过多少次可以恢复原样
解题思路:每组变换会形成一个环,只需利用带权的并查集来算出每个环有多少个元素,最后算出他们(每个环有多少个元素)的最大公倍数即可。

#include<iostream>
#include<algorithm>
using namespace std;

const int N = 100100;
int st[N];
long long ans[N];
int p[N], size[N];
int find(int x){
	if (p[x] != x) p[x] = find(p[x]);
	return p[x];
}

int main(){
	int n;
	cin >> n;
	for (int i = 1; i <= n; i ++ ){
		p[i] = i;
		size[i] = 1;
	}
	
	for(int i=1;i<=n;i++){
		int a;
		cin >> a;
		int b = i;
		if(find(a) != find(b)){
                size[find(b)] += size[find(a)];
                p[find(a)] = find(b);
        }
	}
	int num=0;
		for(int i=1;i<=n;i++){
			if(st[find(i)] == 0){
				ans[num++] = size[find(i)];
				st[find(i)] = 1;
			}
		}
/*	
	for(int i=0;i<num;i++){
		cout << ans[i] << endl;
	}
*/	
	if(num == 1){
		cout << num << endl;
		return 0;
	}
	
	long long res=1;
	for(int i=0;i<num;i++){
		res = res*ans[i]/__gcd(res,ans[i]);
	}
	cout << res;
}




高兴天数

描述

小X性格很独特,如果她今天高兴度比上次一样或更高,她就会很善良,相反,如果她今天高兴度比上次低,她就会很凶!现在已经知道小X在N天里每天的高兴度M。根据这N天中她每天高兴度M,合理安排与她相处时间,使大家与小X友好相处尽量多天数(在小X善良的日子里可以与其友好相处,否则不可以)。现在要求计算出最多能和小X友好相处多少天。

输入

共2行,第一行为一个N,第二行为N个数,为小X每天的高兴程度M。

输出

共1个数,最多能和小X友好相处多少天。

输入样例 1

5

2 3 5 6 4

输出样例 1

4

分析:
即求解最长上升子序列

#include<iostream>
#include<string.h>
using namespace std;

const int MAXN=31005;
long long a[MAXN];
long long low[MAXN];

int main(){
	int n;
	cin >> n;
//	memset(low,0x3f,sizeof low);
	for(int i=1;i<=n;i++){
		cin >> a[i];
	}
//	low[1] = a[1];
	int num = 0;
	for(int i=1;i<=n;i++){
		if(a[i] >= low[num])
			low[++num] = a[i];
		else{
	//二分 
			int l=1;
			int r=num+1;
            while(l<r){
                int mid=(l+r)/2;
                if(a[i]>=low[mid]){
                    l=mid+1;
                }
                else if(a[i]<low[mid]){
                    r=mid;
                }
            }
            	low[l]=min(low[l],a[i]);
		}
	}
	cout << num << endl;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值