士兵排队
描述
一个军官正在指挥他的士兵们排队。已知士兵有K行(1 ≤ K ≤ 20),每行最多N人(2 ≤ N ≤ 10000)。士兵必须按照身高
从高到矮排队,如果一个士兵比左边一个士兵高,则他俩交换,每一行不存在两个士兵身高相同。
输入给出每一行士兵在该行里面的排名,军官想要找到哪一行士兵交换次数最多。
输入
第一行包含两个整数N和K,用空格分开
接下来的K行每行包含N个不同的整数(从1到N),该整数表示每列士兵所在行的身高(1表示最高,N表示最矮)
输出
输出需要交换次数最大的列号。如果存在多个这样的列号,输出其中的最小值。
输入样例 1
3 3
1 2 3
2 1 3
3 2 1
输出样例 1
3
分析:
归并排序求出原序列a的逆序对个数就是冒泡排序需要交换元素的次数
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1000010;
int q[N];
int tmp[N];
long long merge_sort(int q[],int l,int r){
if(l>=r) return 0;
int mid = l+r >>1;
long long res = merge_sort(q,l,mid)+merge_sort(q,mid+1,r);
int k=0,i=l,j=mid+1;
while(i<=mid && j<=r)
if(q[i] <= q[j]){
tmp[k++] = q[i++];
}
else{
res+=mid-i+1;
tmp[k++] = q[j++];
}
while(i<=mid) tmp[k++] = q[i++];
while(j<=r) tmp[k++] = q[j++];
for(i=l,j=0;i<=r;i++,j++){
q[i] = tmp[j];
}
return res;
}
int main(){
int n,k;
int res;
cin >> n >> k;
int max=0;
for(int t=1;t<=k;t++){
for(int i=1;i<=n;i++){
cin >> q[i];
}
int ans;
ans = merge_sort(q,1,n);
if(ans > max){
max = ans;
res = t;
}
for(int i=0;i<n;i++){
q[i]=0;
tmp[i]=0;
}
}
cout << res;
}
点蜡烛
描述
RB过生日啦……信息组的成员都来到了机房给RB过生日,就在RB插完N根蜡烛准备点蜡烛时,RB神奇的发现,每隔一秒,RB插下的N根蜡烛就会按照一定规律变换顺序,可是有强迫症的RB一定要让蜡烛按原本排好的顺序点燃,所以RB只能等,可是RB又赶着时间去上课,那么问题来了,RB最快几秒钟后可以点蜡烛呢?(假设RB的打火机可以在1ms之内把所有蜡烛全部点燃)。
输入
输入文件的第一行包含一个整数N(0<N<=10000),表示蜡烛的总数。初始编号为1,2,3,4……N
接下来N行,每行一个正整数ai,表示左起第i根蜡烛接下来出现在左起第ai个位置上。
输出
仅包括一行,一个正整数M,表示RB的最少等待时间
输入样例 1
5
2
3
4
5
1
输出样例 1
5
分析:
即求一个数列按照一定规律变化,经过多少次可以恢复原样
解题思路:每组变换会形成一个环,只需利用带权的并查集来算出每个环有多少个元素,最后算出他们(每个环有多少个元素)的最大公倍数即可。
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 100100;
int st[N];
long long ans[N];
int p[N], size[N];
int find(int x){
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main(){
int n;
cin >> n;
for (int i = 1; i <= n; i ++ ){
p[i] = i;
size[i] = 1;
}
for(int i=1;i<=n;i++){
int a;
cin >> a;
int b = i;
if(find(a) != find(b)){
size[find(b)] += size[find(a)];
p[find(a)] = find(b);
}
}
int num=0;
for(int i=1;i<=n;i++){
if(st[find(i)] == 0){
ans[num++] = size[find(i)];
st[find(i)] = 1;
}
}
/*
for(int i=0;i<num;i++){
cout << ans[i] << endl;
}
*/
if(num == 1){
cout << num << endl;
return 0;
}
long long res=1;
for(int i=0;i<num;i++){
res = res*ans[i]/__gcd(res,ans[i]);
}
cout << res;
}
高兴天数
描述
小X性格很独特,如果她今天高兴度比上次一样或更高,她就会很善良,相反,如果她今天高兴度比上次低,她就会很凶!现在已经知道小X在N天里每天的高兴度M。根据这N天中她每天高兴度M,合理安排与她相处时间,使大家与小X友好相处尽量多天数(在小X善良的日子里可以与其友好相处,否则不可以)。现在要求计算出最多能和小X友好相处多少天。
输入
共2行,第一行为一个N,第二行为N个数,为小X每天的高兴程度M。
输出
共1个数,最多能和小X友好相处多少天。
输入样例 1
5
2 3 5 6 4
输出样例 1
4
分析:
即求解最长上升子序列
#include<iostream>
#include<string.h>
using namespace std;
const int MAXN=31005;
long long a[MAXN];
long long low[MAXN];
int main(){
int n;
cin >> n;
// memset(low,0x3f,sizeof low);
for(int i=1;i<=n;i++){
cin >> a[i];
}
// low[1] = a[1];
int num = 0;
for(int i=1;i<=n;i++){
if(a[i] >= low[num])
low[++num] = a[i];
else{
//二分
int l=1;
int r=num+1;
while(l<r){
int mid=(l+r)/2;
if(a[i]>=low[mid]){
l=mid+1;
}
else if(a[i]<low[mid]){
r=mid;
}
}
low[l]=min(low[l],a[i]);
}
}
cout << num << endl;
}