自适应辛普森积分(时间复杂度: O ( n ∗ l o g r − l e p s ) O(n*log{\frac{r-l}{eps}}) O(n∗logepsr−l))
使用条件: 当要求一条曲线的积分时,如果曲线的次数小于等于二次,可以用自适应辛普森积分求得积分。
讲解链接: 自适应Simpson(辛普森)学习笔记
一道例题 :Acwing 3074. 自适应辛普森积分
代码:
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<vector>
#include<cmath>
using namespace std;
typedef long long LL;
const double eps = 1e-12;
double f(double x){
return sin(x)/x;
}
double simpson(double l,double r)
{
return (f(l) + 4 * f((l + r) / 2) + f(r)) * (r - l) / 6;
}
double asr(double l,double r,double s)
{
double mid = (l + r) / 2;
double le = simpson(l, mid), ri = simpson(mid, r);
if(fabs(s - (le + ri)) < eps) return le + ri;
return asr(l, mid, le) + asr(mid, r, ri);
}
int main()
{
double l, r; scanf("%lf %lf",&l,&r);
printf("%.6f",asr(l,r,simpson(l,r)));
system("pause");
return 0;
}