【计几】自适应辛普森积分

自适应辛普森积分(时间复杂度: O ( n ∗ l o g r − l e p s ) O(n*log{\frac{r-l}{eps}}) O(nlogepsrl)

使用条件: 当要求一条曲线的积分时,如果曲线的次数小于等于二次,可以用自适应辛普森积分求得积分。

讲解链接: 自适应Simpson(辛普森)学习笔记


一道例题 :Acwing 3074. 自适应辛普森积分

代码:

#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<vector>
#include<cmath>
using namespace std;

typedef long long LL;
const double eps = 1e-12;

double f(double x){
    return sin(x)/x;
}
double simpson(double l,double r)
{
    return (f(l) + 4 * f((l + r) / 2) + f(r)) * (r - l) / 6;
}
double asr(double l,double r,double s)
{
    double mid = (l + r) / 2;
    double le = simpson(l, mid), ri = simpson(mid, r);
    if(fabs(s - (le + ri)) < eps) return le + ri;
    return asr(l, mid, le) + asr(mid, r, ri);
}


int main()
{
    double l, r; scanf("%lf %lf",&l,&r);

    printf("%.6f",asr(l,r,simpson(l,r)));

    system("pause");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值