Codeforces Round #803 (Div. 2)
ALL:7
AC:4
C. 3SUM Closure
题意:我们定义一个数组是 “3SUM-closed” 的,当且仅当对于任意满足
1
≤
i
<
j
<
k
≤
n
1\le i<j<k\le n
1≤i<j<k≤n 的三个数
(
i
,
j
,
k
)
(i,j,k)
(i,j,k),都存在有
1
≤
l
≤
n
1\le l\le n
1≤l≤n,使得
a
i
+
a
j
+
a
k
=
a
l
a_i+a_j+a_k=a_l
ai+aj+ak=al。
现在给你
T
T
T 个数组,对于每个数组,若它是“3SUM-closed”的,则输出 YES
(大小写不敏感,下同);若不是,则输出 NO
。
n
(
3
≤
n
≤
2
×
1
0
5
)
n(3\le n\le2\times10^5)
n(3≤n≤2×105)
思路:容易发现,如果正数个数或负数个数大于等于 3 ,无解。这样就将数据范围缩小为常数。注意如果有多个零,放入至多 3 个即可。
AC代码:https://codeforces.com/contest/1698/submission/162094160
D. Fixed Point Guessing
题意:本题是一个交互题。现有长度为 n n n 的原排列,选择 n − 1 2 \frac{n-1}{2} 2n−1 对元素然后交换得到新序列, n n n 为奇数且不超过 1 0 4 10^4 104 。求在不超过 15 15 15 次讯问中得出未被交换的值,每次询问一个区间,返回新序列的排好序的该子区间。
思路:我们可以利用询问一个前缀,同时可以顺推出来后缀的询问返回值。先不考虑呆在原地的那个元素,考察一些性质,如果划分出一个前缀 a a a 及对应后缀 b b b ,定义 i n a in_a ina 为 a a a 中原来在区间内的数量, o u t b out_b outb为 a a a 中原来在不区间内的数量,可以发现 o u t a = o u t b out_a=out_b outa=outb , i n a , i n b in_a,in_b ina,inb 为偶数。利用后者,如果不动元素位于 a a a ,则 i n a in_a ina 为偶 i n b in_b inb 为奇,否则 i n a in_a ina 为奇 i n b in_b inb 为偶。
AC代码:https://codeforces.com/contest/1698/submission/162129579
E. PermutationForces II
题意:
补了好长时间也没补出来。