【6.28】Codeforces Round #803 (Div. 2)

Codeforces Round #803 (Div. 2)

ALL:7
AC:4


C. 3SUM Closure

题意:我们定义一个数组是 “3SUM-closed” 的,当且仅当对于任意满足 1 ≤ i < j < k ≤ n 1\le i<j<k\le n 1i<j<kn 的三个数 ( i , j , k ) (i,j,k) (i,j,k),都存在有 1 ≤ l ≤ n 1\le l\le n 1ln,使得 a i + a j + a k = a l a_i+a_j+a_k=a_l ai+aj+ak=al
现在给你 T T T 个数组,对于每个数组,若它是“3SUM-closed”的,则输出 YES(大小写不敏感,下同);若不是,则输出 NO n ( 3 ≤ n ≤ 2 × 1 0 5 ) n(3\le n\le2\times10^5) n(3n2×105)

思路:容易发现,如果正数个数或负数个数大于等于 3 ,无解。这样就将数据范围缩小为常数。注意如果有多个零,放入至多 3 个即可。

AC代码:https://codeforces.com/contest/1698/submission/162094160


D. Fixed Point Guessing

题意:本题是一个交互题。现有长度为 n n n 的原排列,选择 n − 1 2 \frac{n-1}{2} 2n1 对元素然后交换得到新序列, n n n 为奇数且不超过 1 0 4 10^4 104 。求在不超过 15 15 15 次讯问中得出未被交换的值,每次询问一个区间,返回新序列的排好序的该子区间。

思路:我们可以利用询问一个前缀,同时可以顺推出来后缀的询问返回值。先不考虑呆在原地的那个元素,考察一些性质,如果划分出一个前缀 a a a 及对应后缀 b b b ,定义 i n a in_a ina a a a 中原来在区间内的数量, o u t b out_b outb a a a 中原来在不区间内的数量,可以发现 o u t a = o u t b out_a=out_b outa=outb i n a , i n b in_a,in_b ina,inb 为偶数。利用后者,如果不动元素位于 a a a ,则 i n a in_a ina 为偶 i n b in_b inb 为奇,否则 i n a in_a ina 为奇 i n b in_b inb 为偶。

AC代码:https://codeforces.com/contest/1698/submission/162129579


E. PermutationForces II

题意:在这里插入图片描述

补了好长时间也没补出来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值