【8.1】代码源 - 【第二大数字和】【石子游戏 III】【平衡二叉树】

#846. 第二大数字和

题意:给定长度为 n ( 2 ≤ n ≤ 1 0 5 ) n(2\leq n\leq 10^5) n(2n105) 的排列,问所有长度至少为 2 2 2 的子段次大值的和是多少。

题解:(数据结构) 代码源每日一题 Div1 第二大数字和
(O(n)做法) 代码源每日一题 Div1 第二大数字和

思路:对于子段问题,我们通常会从下标入手递推。但是 这道题子段次大值的问题是从值域的角度入手的

首先问题转化为:求每个数字 x x x 左右两边的第一个大于 x x x 的数和第二个大于 x x x 的数的下标,详见题解。

我们有一个有序数据结构,然后我们从大到小枚举每个数字,然后将当前数字 a i a_i ai 的下标 i i i 添加进去。添加之前计算第一大数和第二大数,在数据结构中这个下标右边的第一个数字,即为 a i a_i ai 在序列中右边第一个大于 a i a_i ai 的下标,第二大数同理。用 s e t set set 实现即可。

O ( n ) O(n) O(n) 的做法则是先构建 0 , 0 , 1 , 2 , ∼ n − 1 , n , n + 1 , n + 1 0,0,1,2,\sim n-1,n,n+1,n+1 0,0,1,2,n1,n,n+1,n+1 的链表,然后从小到大枚举每个数字的下标,枚举完某个数之后在链表中删除该下标。这个数字的下标在链表中的左右两边的数字即为第一大数的下标,第二大数同理。

AC代码: O ( n log ⁡ n ) O(n\log n) O(nlogn) http://oj.daimayuan.top/submission/314282
O ( n ) O(n) O(n) http://oj.daimayuan.top/submission/314318


#845. 石子游戏 III

题意:在这里插入图片描述
题解:(博弈论)代码源每日一题 Div1 石子游戏 III

思路:循环论证。首先如果序列存在 0 0 0 ,那么:

  1. n 2 < c o u n t ( 0 ) ≤ n \frac n 2 <count(0)\leq n 2n<count(0)n 时,为必输态(无法继续操作)。
  2. 0 < c o u n t ( 0 ) ≤ n 2 0<count(0)\leq \frac n 2 0<count(0)2n 时,为必胜态(可操作一次转为 1. )。

如果序列不存在 0 0 0 存在 1 1 1 ,那么:

  1. n 2 < c o u n t ( 1 ) ≤ n \frac n 2 <count(1)\leq n 2n<count(1)n 时,为必输态(操作一次必然转为 2. )。
  2. 0 < c o u n t ( 1 ) ≤ n 2 0<count(1)\leq \frac n 2 0<count(1)2n 时,为必胜态(可操作一次转为 3. )。

类似于这样,如果最小值出现的次数 > n 2 >\frac n 2 >2n ,则为必输态,因为操作后新的最小值的次数一定是 ( 0 , n 2 ] (0,\frac n 2] (0,2n] 内的,即必胜态;反之为必胜态,因为可以通过选择非最小堆来使得最小值的堆数从 ( 0 , n 2 ] (0,\frac n 2] (0,2n] 变为 ( n 2 , n ] (\frac n 2, n] (2n,n] ,即必输态。

AC代码:http://oj.daimayuan.top/submission/313363


#850. 平衡二叉树

题意:平衡二叉树( AVL \text{AVL} AVL 树),是指左右子树高度差至多为 1 1 1 的二叉树,并且该树的左右两个子树也均为 AVL \text{AVL} AVL 树。 现在问题来了,给定 AVL \text{AVL} AVL 树的节点个数 n n n ,求有多少种形态的 AVL \text{AVL} AVL 树恰好有 n n n 个节点。共有 T T T 组询问,每次给定 n ( T , n ≤ 2000 ) n(T,n\leq 2000) n(T,n2000)

题解:(DP) 代码源每日一题 Div1 平衡二叉树

思路:定义 d p ( i , j ) dp(i,j) dp(i,j) 为有 i i i 个节点且高度为 j j j 的方案数,枚举左数的节点个数 k ( k ∈ [ 0 , i ] ) k(k\in[0,i]) k(k[0,i])

d p ( i , j ) = d p ( k , j ) × d p ( i − k , j )                        + d p ( k , j − 1 ) × d p ( i − k , j )                        + d p ( k , j ) × d p ( i − k , j − 1 ) \begin{matrix} dp(i,j)=dp(k,j)\times dp(i-k,j) \\ ~~~~~~~~~~~~~~~~~~~~~~+dp(k,j-1)\times dp(i-k,j) \\ ~~~~~~~~~~~~~~~~~~~~~~+dp(k,j)\times dp(i-k,j-1) \end{matrix} dp(i,j)=dp(k,j)×dp(ik,j)                      +dp(k,j1)×dp(ik,j)                      +dp(k,j)×dp(ik,j1)

刚开始以为 j j j 的取值范围是 [ 1 , n ] [1,n] [1,n] ,看了题解才想到 j j j 最大为 20 20 20 。时间复杂度 O ( 20 × n 2 ) O(20\times n^2) O(20×n2)

AC代码:http://oj.daimayuan.top/submission/314630

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值