数据结构-逆波兰计算器以及中缀表达式转后缀表达式(Java实现)

1.逆波兰计算器

    我们完成一个逆波兰计算器,要求完成如下任务:
    1)输入一个逆波兰表达式(后缀表达式),使用栈(Stack),计算其结果
    2)支持小括号和多位数整数,因为这里我们主要讲的是数据结构,因此计算器进行简化,只支持对整数的计算。
    3)思路分析

    例如:(3+4)×5-6对应的后缀表达式就是3 4 + 5 × 6 -,针对后缀表达式求值步骤如下:
        1.从左至右扫描,将3和4压入堆栈;
        2.遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈;
        3.将5入栈;
        4.接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;5.将6入栈;
        6.最后是-运算符,计算出35-6的值,即29,由此得出最终结果
public class PolandNotation {
    public static void main(String[] args) {


         String expression = "30 4 + 5 * 6 -";
        
         List<String> list = formatString(expression);
        
         int calculator = calculator(list);
        
         System.out.println("计算结果是"+calculator);
    }
    //格式化后缀表达式
    public static List<String> formatString(String expression){
        //把表达式按照空格划分开 格式化
        String[] s = expression.split(" ");

        //把格式化后的表达式放到数组中
        ArrayList<String> list = new ArrayList<>();

        //把所有的数据添加到数组中
        list.addAll(Arrays.asList(s));

        return list;
    }


    //创建一个方法 计算
    public static int calculator(List<String> ls){

        Stack<String> calStack = new Stack<>();

        for (String item : ls) {
            //这里匹配多位数字
            if (item.matches("\\d+")){
                calStack.push(item);
            }else {
                //从栈中取出两位数字
                int num1 = Integer.parseInt(calStack.pop());
                int num2 = Integer.parseInt(calStack.pop());

                //结果
                int res;

                //匹配加减乘除
                if (item.equals("+")){
                    res = num1 + num2;
                }else if (item.equals("-")){
                    res = num2 - num1;
                }else if (item.equals("*")){
                    res = num1 * num2;
                }else if (item.equals("/")){
                    res = num2 * num1;
                }else {
                    break;
                }

                calStack.push(""+res);
            }

        }
        return Integer.parseInt(calStack.pop());


    }
}

2.中缀表达式转为后缀表达式

package stack;

/*
    @CreateTime 2021/9/10 11:36
    @CreateBy cfk
    逆波兰表达式
    把中缀表达式转化为后缀表达式
*/

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Stack;

public class PolandNotation {
    public static void main(String[] args) {
        String expression = "1+((2+3)*4)-5";
        List<String> strings = toInfixList(expression);
        System.out.println("把中缀表达式转化为了集合== "+strings);
        System.out.println("把中缀表达式转化为了后缀表达式== "+suffixFormatList(strings));


    }

    //将中缀表达式转化为后缀表达式
    /*
    1)初始化两个栈:运算符栈s1和储存中间结果的栈s2;
    2)从左至右扫描中缀表达式;
     */
    public static List<String> suffixFormatList(List<String> expression){
        //创建一个符号栈
        Stack<String> curStack = new Stack<>();

        //创建一个集合存储中间结果
        ArrayList<String> list = new ArrayList<>();

        for (String item : expression) {
            //3)遇到操作数时,将其压s2;
            if (item.matches("\\d+")){
                list.add(item);
                /*
                5)遇到括号时:
                (1)如果是左括号“(”,则直接压入s1
                (2)如果是右括号“)”,则依次弹出sl栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
                */
            }else if (item.equals("(")){
                curStack.push(item);
                // String expression = "1+((2+3)*4)-5";
            }else if (item.equals(")")){
                while (!curStack.peek().equals("(")){
                    list.add(curStack.pop());
                }
                curStack.pop();
            }else {
                /*4)遇到运算符时,比较其与s1栈顶运算符的优先级:
                1.如果s1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
                2.否则,若优先级比栈顶运算符的高,也将运算符压入s1;
                3.否则,将s1栈顶的运算符弹出并压入到s2中,再次转到(4-1)与s1中新的栈顶运算符相比较;*/
                while (curStack.size() != 0 && OperatorOrder.getOrder(item)<=OperatorOrder.getOrder(curStack.peek())) {
                    list.add(curStack.pop());
                }
                curStack.push(item);

            }
        }

        // 6)重复步骤2至5,直到表达式的最右边
        // 7)将s1中剩余的运算符依次弹出并压入 s2
        // 8)依次弹出s2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式

        while (curStack.size() != 0) {
            list.add(curStack.pop());
        }

        return list;

    }

    //把中缀表达式转化为一个集合   ArrayList [1,+.(.(,2,+,3,)*.4,).-,5] =》ArrayList [ 1,2,3,+,4,*,+,5,-l
    //1+((2+3)×4)-5
    public static List<String> toInfixList(String expression){

        //创建一个集合存储
        List<String> list = new ArrayList<>();

        //定位标志
        int index = 0;

        //定义一个可变字符串 用来处理后面的多位数字
        StringBuilder builder = new StringBuilder();

        while (index < expression.length()){

            //如果表示的数据为符号时 进行以下的处理
            if (expression.charAt(index)<48
                    || expression.charAt(index)>57){
                list.add(expression.charAt(index)+"");
                index++;
            }else {
                //如果数据为数字 并且多位数字进行以下处理
                while (index < expression.length() && expression.charAt(index)>=48
                        && expression.charAt(index)<=57){
                    builder.append(expression.charAt(index));
                    index++;
                }
                list.add(builder.toString());
                builder.setLength(0);
            }


        }
        return list;


    }
}

感觉这种算法题不好想,很多靠理解,当自己理清思路之后实现起来就没那么困难了

不要死记硬背!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值