这里写自定义目录标题
1.找一个区间[L,R],使得答案一定在该区间中。
2.找一个判断条件,使得该判断条件具有二段性,并且该答案一定是二段性的分界点。
3.分析中点M在该判断条件下是否成立,如果成立,考虑答案是在哪个区间;如果不成立,考虑答案在哪个区间。
4.如果更新方式是R=MID,则不用做任何处理;如果更新方式是L=MID,则需要在计算MId的时候加上1。
模板题:
给定一个按照升序排列的长度为n的整数数组,以及 q 个查询。
对于每个查询,返回一个元素k的起始位置和终止位置(位置从0开始计数)。
如果数组中不存在该元素,则返回“-1 -1”。
输入格式
第一行包含整数n和q,表示数组长度和询问个数。
第二行包含n个整数(均在1~10000范围内),表示完整数组。
接下来q行,每行包含一个整数k,表示一个询问元素。
输出格式
共q行,每行包含两个整数,表示所求元素的起始位置和终止位置。
如果数组中不存在该元素,则返回“-1 -1”。
数据范围
1≤n≤100000
1≤q≤10000
1≤k≤10000
输入样例:
6 3
1 2 2 3 3 4
3
4
5
输出样例:
3 4
5 5
-1 -1
模板代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int n, m;
int q[N];
int main()
{
scanf("%d%d", &n, &m);
for (int i = 0; i < n; i ++ ) scanf("%d", &q[i]);
for (int i = 0; i < m; i ++ )
{
int x;
scanf("%d", &x);
// 二分x的左端点
int l = 0, r = n - 1; // 确定区间范围
while (l < r)
{
int mid = l + r >> 1;
if (q[mid] >= x) r = mid;
else l = mid + 1;
}
if (q[r] == x)
{
cout << r << ' ';
// 二分x的右端点
r = n - 1; // 右端点一定在[左端点, n - 1] 之间
while (l < r)
{
int mid = l + r + 1 >> 1; // 因为写的是l = mid,所以需要补上1
if (q[mid] <= x) l = mid;
else r = mid - 1;
}
cout << r << endl;
}
else cout << "-1 -1" << endl;
}
return 0;
}
作者:yxc
链接:https://www.acwing.com/activity/content/code/content/160124/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。