整数二分的步骤

这里写自定义目录标题


1.找一个区间[L,R],使得答案一定在该区间中。
2.找一个判断条件,使得该判断条件具有二段性,并且该答案一定是二段性的分界点。
3.分析中点M在该判断条件下是否成立,如果成立,考虑答案是在哪个区间;如果不成立,考虑答案在哪个区间。
4.如果更新方式是R=MID,则不用做任何处理;如果更新方式是L=MID,则需要在计算MId的时候加上1。

模板题:
给定一个按照升序排列的长度为n的整数数组,以及 q 个查询。

对于每个查询,返回一个元素k的起始位置和终止位置(位置从0开始计数)。

如果数组中不存在该元素,则返回“-1 -1”。

输入格式
第一行包含整数n和q,表示数组长度和询问个数。

第二行包含n个整数(均在1~10000范围内),表示完整数组。

接下来q行,每行包含一个整数k,表示一个询问元素。

输出格式
共q行,每行包含两个整数,表示所求元素的起始位置和终止位置。

如果数组中不存在该元素,则返回“-1 -1”。

数据范围
1≤n≤100000
1≤q≤10000
1≤k≤10000
输入样例:
6 3
1 2 2 3 3 4
3
4
5
输出样例:
3 4
5 5
-1 -1

模板代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010;

int n, m;
int q[N];

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 0; i < n; i ++ ) scanf("%d", &q[i]);

    for (int i = 0; i < m; i ++ )
    {
        int x;
        scanf("%d", &x);
        // 二分x的左端点
        int l = 0, r = n - 1;   // 确定区间范围
        while (l < r)
        {
            int mid = l + r >> 1;
            if (q[mid] >= x) r = mid;
            else l = mid + 1;
        }

        if (q[r] == x)
        {
            cout << r << ' ';

            // 二分x的右端点
            r = n - 1;  // 右端点一定在[左端点, n - 1] 之间
            while (l < r)
            {
                int mid = l + r + 1 >> 1;   // 因为写的是l = mid,所以需要补上1
                if (q[mid] <= x) l = mid;
                else r = mid - 1;
            }
            cout << r << endl;
        }
        else cout << "-1 -1" << endl;
    }

    return 0;
}

作者:yxc
链接:https://www.acwing.com/activity/content/code/content/160124/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值