城市地理数据分享—[20240510] 全国OSM数据2014-2023

博主本次分享的数据为:[20240510] 全国OSM数据2014-2023

本期数据涵盖了2014年至2023年全国的OSM数据。

其中:

路网包含,高速,国道,省道,铁路,县道,乡道,一二三四级公路数据Open Street Map(简称OSM)中国矢量数据,该数据含有18个图层,数据形式分为点、线和面。其中包括的数据图层有:城镇位置(places)、兴趣点(pois)、自然特征 (natural)、寺庙教堂(pofw)、交通相关(traffic)、交通基础设施(transport)、公路(roads)、轨道交通(railways)、水系(waterways)、水体(water)、建筑轮廓(buildings)、土地利用与土地覆盖(landuse)等。

图片

图片

数据免费分享给小伙伴们。文末有数据获取方式。

一、数据介绍:

数据名称:全国OSM数据2014-2023

数据年份:2014-2023年

数据范围:全国所有城市

数据整理:公众号“ARCGIS数据洋”

二:特殊说明

1、本数据从国内网站收集而来,不能保证数据的准确性

2、本数据仅用作为学习用途,不能用于商业通途

3、本人只负责数据的搜集和整理工作,不能保证数据的精度和准确度以及时效性

4、如数据有侵权,请告知本人,本人尽早删除该数据。

三:数据概览

我们以上海、武汉、广州三个城市为例来预览下数据:

图片

四:数据获取方式

关注并私信博主,发送20240510,即可数据获取方式。

### 如何导出OSM数据 #### 工具方法一:ArcGIS中的OpenStreetMap Toolbox 通过ArcGIS软件,可以使用其内置的`OpenStreetMap Toolbox`工具来加载和处理OSM数据。具体操作流程包括选择`Load OSM File`功能模块,在此过程中需指定一个OSM文件作为输入源,并设置目标数据库位置用于存储转换后的Shapefile格式的数据[^1]。 #### 方法二:QGIS结合插件实现OSM数据导入与修改 在QGIS平台下,借助于特定插件能够方便快捷地完成OSM数据的获取及编辑工作。“OSM Standard”选项卡可用来加载在线版的地图瓦片服务以便直观查看所需地理范围内的细节情况;当下载完成后即可对其进行进一步自定义调整比如新增字段等操作步骤如添加楼层信息(floor),最后还可以借助其他高级可视化插件像Qgis2threejs把二维矢量图层转化为三维模型效果展示出来[^2]。 #### 技术手段三:基于Python脚本自动化提取OSM要素 对于熟悉编程语言尤其是Python开发者来说,则可以通过编写相应代码逻辑直接解析原始XML形式表示出来的开放街道地图(OSM)文档内容进而筛选感兴趣的道路节点(nodes)集合再保存成JSON类型的外部文件供后续分析应用之用。这里提到OSM的核心组成部分主要包括三种类型即节点(node),路径(way)还有关系(relation)[^3]。 ```python import xml.etree.ElementTree as ET def parse_osm(file_path): tree = ET.parse(file_path) root = tree.getroot() nodes = {} ways = [] for child in root: if child.tag == 'node': node_id = child.attrib['id'] lat = float(child.attrib['lat']) lon = float(child.attrib['lon']) nodes[node_id] = {'latitude': lat, 'longitude': lon} elif child.tag == 'way': way_nodes = [] tags = {} for subchild in child: if subchild.tag == 'nd': ref = subchild.attrib['ref'] way_nodes.append(ref) elif subchild.tag == 'tag' and subchild.attrib['k'] == 'highway': highway_type = subchild.attrib['v'] if way_nodes and highway_type: ways.append({'type': highway_type, 'nodes': way_nodes}) return nodes, ways if __name__ == "__main__": file_name = "example.osm" parsed_data = parse_osm(file_name) print(parsed_data) ``` 上述示例展示了如何读取并过滤OSM XML文件中的道路网络结构信息,最终得到每条道路上所有关联节点列表以及它们所属类别(例如primary、secondary等等)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ARCGIS数据洋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值