自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1799)
  • 收藏
  • 关注

原创 AI+提示工程架构:打造高效智能提示系统的秘诀

当上下文过长时,需要用摘要模型(比如GPT-3.5-turbo)提取关键信息,减少 token 消耗。示例:用户的历史对话(1000字):“我最近想买一双登山鞋,因为周末要去爬泰山。我之前的鞋子太重了,爬的时候脚很酸。而且上次下雨的时候,鞋子进水了,很不舒服。我听说Vibram大底很防滑,Gore-Tex面料很透气,是不是这样?还有,轻量化设计很重要,最好单只鞋不超过300g。摘要后。

2025-09-15 10:35:21 320

原创 《探秘!科研AI智能体如何帮助AI应用架构师,解读复杂社会动态》

想象这样一个场景:在繁华都市的街头,人来人往,车水马龙。每一个行人都带着自己的目的和行为模式,人与人之间相互影响,整个城市仿佛是一个巨大而复杂的动态系统。而在城市的某个角落,一位AI应用架构师正绞尽脑汁,试图设计一款能够预测城市人群流动趋势,从而优化公共交通资源配置的AI应用。但面对如此复杂且充满变数的社会动态,他感到困难重重。就在这时,科研AI智能体宛如一位神秘的助手,悄然登场。它就像一把神奇的钥匙,能否帮助这位架构师打开解读复杂社会动态的大门呢?

2025-09-15 03:56:23 298

原创 AI应用架构师必藏!芯片验证AI加速器的7个优化技巧,直接提升性能

时间局部性:最近用过的数据,短期内还会再用(比如同一IP核的多次仿真波形);空间局部性:相邻地址的数据,大概率会被一起访问(比如同一测试用例的多维度特征)。芯片验证场景中,80%的AI计算都在重复处理20%的热点数据(比如某款GPU核的仿真波形,会被反复用来训练bug预测模型)。如果这些数据存放在远程存储(如HDD或云存储),每次访问都要“长途跋涉”,会严重拖慢AI加速器的速度。芯片验证AI加速器的优化,本质是让AI的算力与芯片验证的场景“精准匹配”数据Locality:匹配验证数据的“重复模式”;

2025-09-15 02:24:26 311

原创 提示工程架构师实战:用代码覆盖率分析解决提示系统的10个常见问题

传统代码覆盖率衡量的是测试用例覆盖代码的比例(如语句、分支、路径)。而提示系统的“代码”是提示模板中的可变元素与逻辑测试用例覆盖提示模板中「变量替换」「条件分支」「工具调用参数」「多轮对话路径」等关键元素的比例。指标目标覆盖度变量覆盖(user_name、product、quantity、tool_name、tool_params、status、delivery_date)100%分支覆盖(is_vip的True/False)100%参数覆盖(tool_params的order_id。

2025-09-15 00:47:15 304

原创 未来已来:提示工程架构师预见Agentic AI可持续发展的5大颠覆性趋势

Agentic AI是具备自主目标导向性感知环境:通过传感器、数据接口获取外部信息(比如温度、湿度、用户需求);设定目标:根据核心任务(比如“优化茶场产量”)拆解出子目标(比如“保持土壤湿度”“防治虫害”);动态决策:根据环境变化调整策略(比如下雨了就停止灌溉);持续学习:从实践中积累经验(比如知道“春茶采摘前一周不能浇水过多”);协同合作:与其他智能体(比如灌溉Agent、物流Agent)共享信息、分配任务。Agentic AI的可持续发展,本质上是从“工具化”向“生态化”的跃迁。

2025-09-14 23:25:16 558

原创 AI安全评估的5个常见错误,提示工程架构师必避免

内部系统信息:API密钥、数据库密码、服务器IP;公司政策:隐私政策、安全规则、员工福利;技术操作:服务器配置、数据库操作、代码部署。哪些内容是绝对不能回答的?(比如违法请求、隐私信息);哪些内容是需要限制的?(比如代码生成、外部链接);哪些场景是高风险的?(比如多轮对话、隐式攻击)。AI安全评估不是“走流程”,而是站在攻击者的角度,用对抗性思维找漏洞。本文讲的5个错误,本质上都是**“评估视角太窄”**——只测显式攻击,没测隐式;只测静态,没测动态;只测攻击,没测幻觉;

2025-09-14 21:54:26 805

原创 提示工程架构师指南:Agentic AI医疗应用的扩展性设计

1. 定义症状采集Agent的工具(提取症状的函数)# 这里可以调用NLP工具(如spaCy)提取结构化症状return {"main_symptom": "多饮多尿","duration": "1周","associated_symptoms": ["体重下降5kg"],"triggers": "无明显诱因"# 2. 定义症状采集Agent的提示模板("system", "你是一个专业的医疗症状采集助理,请将用户的描述转化为结构化的症状信息。"),])

2025-09-14 20:32:31 275

原创 上下文工程——AI应用架构师提升AI智能体性能的核心方法

当你用AI客服咨询订单问题时,它却忘了你5分钟前说的“我对花生过敏”;当你用AI助手写代码时,它居然把你前面定义的函数参数搞混了——这些让人崩溃的“健忘”场景,本质上都是AI智能体的上下文处理能力不足。对于AI应用架构师来说,要让智能体从“笨笨的工具”变成“懂你的助手”,核心不是换更强大的大模型,而是做好上下文工程——就像给智能体搭建一个“智能记忆库”:筛选最相关的信息、组织成最易理解的结构、动态更新记忆内容,最终让大模型的“聪明”真正落地成用户能感知的“好用”。

2025-09-14 19:10:32 469

原创 AI模型云端部署的实践与思考:AI应用架构师分享

你带领团队耗费数月,经过无数次迭代、调参,终于训练出一个性能优异、甚至超出预期的AI模型(也许是精准的推荐系统,也许是高效的图像识别引擎,也许是强大的NLP模型)。成功的云端部署,才是真正让AI产生价值的惊险一跃。拥抱最佳实践,理解背后的权衡,持续迭代优化,方能使AI应用稳定、高效、安全地运行于云端,最终驱动真实的业务成功。好的,作为一位经历过多次AI项目落地的应用架构师,我非常乐意分享关于AI模型云端部署的实践经验和深度思考。的视角,超越简单的模型推理服务部署教程,深入探讨将AI模型。

2025-09-14 17:48:04 330

原创 从理论到实践:大数据可视化技术栈全解析

随着信息技术的飞速发展,大数据时代已经来临。海量的数据蕴含着巨大的价值,但如何从这些数据中提取有意义的信息并进行有效的展示,成为了一个亟待解决的问题。大数据可视化作为一种重要的手段,可以将复杂的数据以直观的图形、图表等形式呈现出来,帮助用户更好地理解数据、发现规律和做出决策。本文的目的是全面解析大数据可视化技术栈,涵盖从理论到实践的各个方面,为读者提供一个系统的学习和参考框架。文章将详细介绍大数据可视化的核心概念、算法原理、数学模型、实际应用场景以及相关的工具和资源,帮助读者深入理解和掌握这一技术。

2025-09-14 16:26:12 291

原创 提示工程架构师深度:Agentic AI在环境保护中的可解释性设计与提示策略

Agentic AI(智能体AI)是具备自主感知、持续推理、动态行动、环境交互感知:从多源数据(卫星、传感器、气象、法规)中提取环境状态;推理:结合领域知识(如污染物传播模型、环保法规)推导问题根源;行动:生成具体决策(如关闭排污口、调整风电出力);反馈:根据行动结果优化后续决策(如治理效果未达标时调整策略)。在环保领域,Agentic AI的价值在于解决“动态、复杂、多约束”的问题比如污染溯源。

2025-09-14 15:03:42 441

原创 数据交易平台AI定价系统:架构师详解消息队列在异步定价中的应用

数据交易平台就像一个"数字菜市场":卖家(数据提供者)把数据(比如用户行为数据、卫星影像数据)放到平台上,买家(企业、研究者)根据需求购买。但数据不像白菜——它的价值取决于维度、更新频率、质量等多个特征,需要用AI模型准确计算价格。如果平台让买家"提交请求后等待AI计算完成"(同步处理),就像菜市场老板让顾客站在摊位前等他算完100种蔬菜的价格,顾客早走光了。这时候,异步定价就成了关键:让买家提交请求后先去做别的,AI慢慢算,算好后再通知买家。而消息队列,就是实现异步定价的"核心工具"。

2025-09-14 13:26:32 536

原创 从原型到量产:AI应用架构师的智能文本生成系统迭代

智能文本生成系统的落地是**“快速验证需求”与“工程化规模化”的平衡艺术。本文以AI应用架构师的视角,拆解从原型(MVP)到量产的全流程:从原型阶段的“功能验证优先”,到量产阶段的“性能、成本、稳定性三位一体”;覆盖理论框架推导**、架构分层设计推理优化实现安全伦理考量四大核心环节。通过真实案例与生产级代码,揭示架构师如何在“快速迭代”与“长期可维护”间寻找最优解——最终实现从“能生成文本”到“能稳定生成高质量文本”的跨越。性能瓶颈。

2025-09-14 11:54:22 539

原创 大数据领域数据预处理的核心要点解析

在大数据时代,数据量呈现爆炸式增长,数据来源广泛且复杂多样。然而,原始数据往往存在质量问题,如缺失值、噪声、不一致性等,这些问题会严重影响后续数据分析和挖掘的结果。数据预处理的目的就是对原始数据进行一系列的处理,提高数据的质量,使其更适合进行后续的分析和挖掘工作。本文的范围涵盖了大数据领域数据预处理的主要方面,包括数据清洗、数据集成、数据变换和数据归约等核心要点。我们将深入探讨这些要点的原理、算法和实际应用,帮助读者全面了解数据预处理在大数据分析中的重要性和具体操作方法。

2025-09-14 10:17:12 507

原创 Agentic AI技术深度解析:提示工程架构师的实战经验分享

传统LLM应用多依赖单轮提示或线性推理链缺乏自主决策:无法根据任务进展动态调整策略(比如“是否需要调用工具?是否需要追问用户?”);无长期记忆:每次对话都是“从头开始”,无法利用历史信息优化后续回答;工具调用低效:需人工指定工具使用时机,无法自动选择最适合的工具组合。这些问题导致LLM在数据分析、代码生成、复杂决策等场景中表现受限,难以真正“自主解决问题”。Agentic AI是具备自主决策能力的AI系统接收目标任务(如“分析销售数据”);自主选择行动步骤。

2025-09-14 03:48:26 240

原创 某电商AI项目:架构师用量子-AI协同优化推荐系统的经验

在电商场景中,推荐系统的核心矛盾是高维数据处理复杂度与实时个性化需求的冲突。传统AI推荐模型(如Transformer、DLRM)虽能捕捉复杂模式,但在高维特征降维、稀疏矩阵补全、实时优化等环节仍受限于经典计算的多项式复杂度瓶颈。量子计算的叠加性(Superposition)与纠缠性(Entanglement)为解决这一矛盾提供了新范式——通过量子算法加速推荐系统中的核心计算步骤(如特征提取、相似性匹配、优化决策),与经典AI模型形成协同效应。本文基于某头部电商量子-AI协同推荐项目的实践经验,从。

2025-09-14 02:16:23 276

原创 从0到1:AI应用架构师的AI模型云端部署全流程

小流量场景用FastAPI,快速验证;突发流量用Serverless,节省成本;高并发场景用K8s,保障高可用;没有运维经验用云原生AI服务,快速上线。行动号召现在就拿起你训练好的模型,用FastAPI写一个简单的推理接口,部署到本地Docker,然后推送到云平台的EC2实例。如果遇到问题,欢迎在评论区分享你的经历!我是张三,某互联网公司AI应用架构师,多年AI工程化经验,专注于AI模型部署和云原生技术。我的公众号“AI工程化之路”会分享更多实用的AI工程技巧,欢迎关注!最后。

2025-09-14 00:44:20 606

原创 优化提示生成流程:提示工程架构师的最佳实践总结(2024最新)

2024年,提示工程已从“个人技巧”升级为“团队工程”。本文将基于最新行业实践,系统总结提示工程架构师优化提示生成流程的全链路方法论如何通过流程诊断定位当前提示生成的瓶颈?如何设计适配不同场景的标准化提示生成流程?2024年必备的工具链(从设计到测试、协作)如何落地?如何建立“提示质量闭环”,实现持续迭代优化?团队协作中,如何沉淀知识、避免重复造轮子?流程诊断:通过日志分析和用户反馈,定位“需求理解偏差”“提示设计混乱”等痛点;流程设计。

2025-09-13 23:07:07 747

原创 AI在提示工程架构中的应用:提升提示实时性

在AI应用从“离线分析”走向“实时交互”的今天,提示实时性已成为决定用户体验的关键指标——就像快递员既要“快”(低延迟),又要“准”(正确送达),还要“灵活”(应对地址变更)。本文将以“餐厅点餐系统”为比喻,拆解提示工程架构的核心模块,深入分析实时性挑战的根源,并通过AI自动优化提示、动态调整上下文、加速模型推理三大技术路径,结合代码示例与案例分析,揭示如何让提示工程架构实现“毫秒级响应”。无论是对话系统、实时决策还是自动驾驶,这些方法都能帮助你解决“提示慢、不准、不灵活”的痛点,让AI真正“活”起来。

2025-09-13 21:35:03 472

原创 大数据微服务架构:Eureka服务发现机制深度解析

必选元数据:服务名()、IP地址()、端口()、实例ID(默认是可选元数据:自定义信息(比如,用于告诉消费者HDFS的块大小)。集群部署Eureka Server:至少3个节点,分布在不同机架;启用自我保护模式:避免网络分区导致的误删;配置健康检查:及时标记失效实例;优化缓存参数:根据服务数量调整;合理设置心跳间隔:服务数量多的话,调大;使用本地缓存:Consumer优先使用本地缓存,减少对Server的依赖。

2025-09-13 20:02:58 433

原创 从0到1构建医疗AI智能体:AI应用架构师的全流程设计手册

假设你是医院的IT负责人,今天收到放射科王医生的吐槽:“昨天我看了120份CT片,眼睛酸得快睁不开了,有几份肺结节的报告差点漏看!” 你突然想到:能不能做个"AI小助手",帮医生自动标记结节、计算大小?这就是医疗AI智能体的核心目的——用AI解决临床中的"重复劳动"和"决策辅助"问题。本文的范围是:从0开始设计一个能真正落地的医疗AI智能体(比如"肺结节检测助手"),覆盖需求定义→数据处理→模型构建→安全合规→应用部署的全流程。买菜前的准备(背景与术语):先搞懂"医疗AI要什么";备菜。

2025-09-13 18:30:56 495

原创 ClickHouse 数据导入实战:从MySQL到ClickHouse的迁移方案

本文旨在为需要将数据从MySQL迁移到ClickHouse的开发者和数据分析师提供一套完整的解决方案。ClickHouse与MySQL的核心差异数据迁移前的准备工作多种迁移方案的技术实现性能优化和常见问题解决文章将从基础概念讲起,逐步深入到具体实现方案,最后讨论优化技巧和未来趋势。每个部分都配有详细的代码示例和示意图,确保读者能够轻松理解和实践。ClickHouse:由Yandex开发的开源列式数据库管理系统,专为在线分析处理(OLAP)设计MySQL。

2025-09-13 16:53:56 727

原创 材料科学中的热电材料设计:AI应用架构师用生成式AI优化ZT值

热电材料是一种能实现“热能-电能”直接转换的功能材料,广泛应用于废热回收(如工业余热、汽车尾气)、固态制冷(如芯片散热)等领域。其性能由ZT值(热电优值)衡量,公式为:其中,(S)(塞贝克系数)、(\sigma)(电导率)、(\kappa)(热导率)三者存在相互制约的“热电矛盾”(如提高(\sigma)往往会同时提高(\kappa)),导致传统设计方法(试错法、第一性原理计算)面临效率低、周期长、成本高的瓶颈。例如,开发一种ZT值>1.5的热电材料,传统方法可能需要2-5年,而企业需求是。

2025-09-13 15:32:01 499

原创 手把手教你!提示工程架构师的智能IDE设计实战

生成用户认证API的文档,包括登录(/login)、注册(/register)、刷新令牌(请求方法(如POST);参数(路径/查询/请求体);响应格式(成功/失败案例);错误码(如401未授权、400参数错误)。

2025-09-13 14:10:04 471

原创 前沿探索!提示工程架构师前沿探索大规模语言模型在提示工程应用

提示体系:由多个层级、模块组成的 Prompt 集合,而非单个 Prompt;提示架构:提示体系的设计逻辑(比如分层、模块化、协同流程);LLM-原生提示:充分利用 LLMs 特性设计的 Prompt(比如结合 Function Call 的触发提示)。提示工程的未来,不是“写更好的 Prompt”,而是“设计更系统的提示架构”。用 LLMs 的特性(大上下文、少样本、工具调用、多模态)解决提示工程的规模化问题;将零散的 Prompt 转化为可复用、可扩展的提示体系;

2025-09-13 12:32:51 608

原创 创新驱动:AI应用架构师的智能金融系统设计新突破

回顾本文,我们拆解了智能金融系统设计中的四大核心突破数据架构:用联邦学习解决“数据隐私”与“多源整合”的矛盾;决策架构:用自适应决策替代静态规则,实现“动态优化”;交互架构:用主动预测替代被动响应,让系统“懂用户”;运维架构:用实时可观测替代静态监控,实现“自我修复”。这些突破的核心不是“用更先进的AI技术”,而是**“用AI解决传统架构解决不了的问题”**——比如数据隐私、决策灵活性、用户需求识别、运维效率。

2025-09-13 10:55:42 521

原创 惊人变革!AI应用架构师推动金融市场AI监控系统的升级之路

异常检测(Anomaly Detection):识别“非预期的交易行为”(如账户突然大额转入转出);趋势预测(Trend Prediction):预测市场波动的极端情况(如股票闪崩);因果分析(Causal Inference):解释“异常发生的原因”(如“某股票下跌是因为负面新闻还是内幕交易?”)。AI监控系统的目标是将这三类任务自动化、实时化、可解释化,辅助监控人员快速决策。AI监控系统的升级,不是简单的“用AI替换规则”,而是技术与业务的深度融合。

2025-09-13 09:28:42 502

原创 AI应用架构师总结:智能供应商评估系统的8个安全防护措施(附合规指南)

智能供应商评估系统(ISAS)是结合AI技术(机器学习、自然语言处理、知识图谱)与供应链管理(SCM)流程供应商资质审核(营业执照、资质证书的OCR识别与真实性验证);风险预测(通过历史数据预测供应商的违约、欺诈风险);绩效评估(基于交付周期、质量率等指标的动态评分);合规检查(自动匹配GDPR、环保法规等要求)。与传统规则引擎相比,ISAS的优势是处理非结构化数据(如供应商财报文本)、捕捉隐性风险(如关联方交易),但也因依赖数据与模型引入了新的安全风险。ISAS的安全问题可抽象为。

2025-09-13 02:59:55 684

原创 AI原生应用助力计算机视觉技术飞跃

计算机视觉(CV)是让机器“看懂世界”的核心技术,从手机人脸解锁到自动驾驶识别红绿灯,它已渗透到生活每个角落。但传统CV应用常面临“训练慢、用不起、不够准”的问题——比如工厂质检系统需要人工标注上万张缺陷图片,训练一个模型要等一周;自动驾驶的实时识别延迟可能导致事故。本文将聚焦“AI原生应用”这一关键破局点,解释它如何从底层重构CV技术,覆盖从模型训练到落地应用的全链路优化。用“智能小侦探升级记”的故事引出AI原生应用与CV的关系;拆解两者核心概念,用“工具箱”“眼睛”等比喻降低理解门槛;

2025-09-13 01:22:43 421

原创 Python实战:使用PyOD库实现高效大数据异常检测

PyOD的优势易用性:统一API,与Scikit-learn兼容,学习成本低;高效性:支持并行计算、批处理、近似算法,适合大数据场景;通用性:覆盖多种算法,适用于多种场景;可解释性:支持异常得分校准、邻域可视化,便于业务决策。PyOD的不足实时处理支持有限:部分模型(如AutoEncoder)不支持流式数据;高维数据性能下降:需结合降维技术;依赖外部库:如Dask、Spark,需额外学习。结论:对于大数据场景的无监督/半监督异常检测,PyOD是当前最优的Python工具包。

2025-09-12 23:50:39 527

原创 HBase在大数据领域的实时分析应用案例

本文章的目的在于全面介绍HBase在大数据领域实时分析的应用情况。通过详细的案例分析,帮助读者深入理解HBase的特性和优势,掌握如何利用HBase进行大数据的实时分析。范围涵盖了HBase的核心概念、算法原理、实际项目开发以及不同行业的应用场景等方面。本文首先介绍HBase的核心概念和相关联系,接着阐述其核心算法原理和具体操作步骤,然后通过数学模型和公式进行详细讲解。之后通过项目实战展示代码实现和分析,列举实际应用场景,推荐相关工具和资源。最后总结未来发展趋势与挑战,提供常见问题解答和扩展阅读参考资料。

2025-09-12 22:28:11 586

原创 探秘AI应用架构师的智能营销AI决策系统的营销资源整合

企业的营销目标是什么?(比如提高ROI、增加用户复购率、扩大市场份额);当前的营销资源有哪些?(比如用户、内容、渠道、预算);资源整合的痛点是什么?(比如数据分散、协同效率低、策略静态);希望通过AI解决什么问题?(比如精准匹配、动态优化、整体协同)。AI驱动的营销资源整合,不是要取代运营人员,而是要赋能他们。AI能做的是“处理海量数据、精准匹配资源、动态优化策略”,而运营人员能做的是“洞察用户情感、设计品牌故事、制定战略方向”。两者的结合,才能让营销资源发挥最大的价值。

2025-09-12 20:59:57 757

原创 跨语言AI应用的风险防控:AI应用架构师的体系设计

在全球化浪潮中,跨语言AI已成为跨国企业、国际服务的核心基础设施——比如亚马逊的多语言客服、Google翻译的实时对话功能、字节跳动的全球化内容推荐。2022年,某电商AI将日文“注文をキャンセル”(取消订单)错译为“confirm order”(确认订单),导致用户投诉;2023年,某医疗AI将中文“过敏性休克”翻译成西班牙语时漏掉“grave”(严重),险些造成医疗事故;2024年,某教育AI因训练数据中“男性程序员”样本过多,对女性用户的技术问题响应速度慢2秒。

2025-09-12 19:24:26 872

原创 震撼来袭!提示工程架构师多语言提示系统设计大招

英语用户问:“Where is my order?”(我的订单在哪里?),用英文提示“Please answer the user’s question about order status in English, be friendly.”,AI回复得很准确。西班牙语用户问:“¿Dónde está mi pedido?”(我的订单在哪里?

2025-09-11 14:10:15 534

原创 《一文洞察本质!AI应用架构师在AI驱动价值创造中的实用策略剖析》

当企业高呼“AI赋能”时,多数失败的根源并非模型不够精准,而是架构设计未能连接“技术能力”与“业务价值”。AI应用架构师的核心使命,不是搭建一个“能运行的系统”,而是构建一个“能持续创造价值的闭环”。本文将从本质逻辑出发,拆解AI应用架构的“价值创造链条”,结合3大核心策略(需求驱动的架构设计、工程化的模型落地、自动化的运维闭环)和5个真实案例(电商推荐、物流预测、医疗影像、金融风控、工业质检),教你如何从“业务痛点”到“技术实现”,再到“价值放大”,一步步让AI从“实验室”走进“生产线”。

2025-09-11 12:38:22 834 1

原创 全球化企业数据中心规划:AI应用架构师的实战策略

在全球化浪潮下,企业面临"业务跨地域、数据跨边界、AI跨场景"的三重挑战:如何让分布在纽约的用户享受毫秒级的AI推荐?如何让伦敦的工程师高效训练用北京用户数据的模型?如何在遵守欧盟GDPR的同时,让东京的数据中心为东南亚用户提供服务?作为AI应用架构师,你需要的不是"标准化数据中心蓝图",而是一套适配全球化场景的AI原生规划框架。如何平衡"全球统一管理"与"本地个性化服务"?如何让AI模型在"分布式数据"上高效训练?如何用边缘计算解决"跨地域延迟"问题?如何在合规约束下实现"数据自由流动"?

2025-09-11 11:16:24 935

原创 提示工程架构师的技术路线图:如何快速掌握核心技能?

当你还在为“如何让LLM写出更通顺的文案”发愁时,提示工程架构师已经在设计“支撑10万级用户的智能客服提示系统”了——他们的工作不是“写一个好提示”,而是“设计一套能自动生成、优化、适配不同场景的提示系统”。用“餐厅总厨”的比喻讲清提示工程架构师的核心价值;用“软件架构”的逻辑拆解提示系统的核心模块;给出分阶段技能树(基础→核心→进阶),附真实项目案例和避坑指南;教你用“系统思维”解决LLM应用的底层问题(比如上下文过载、回答不一致)。提示工程的终极能力,是“用提示连接人与AI系统”。

2025-09-11 09:39:07 291

原创 提示工程:智能艺术创作的创意催化剂

提示工程可以简单理解为通过精心设计和优化输入给人工智能模型的文本提示,以引导模型生成符合预期的输出。在智能艺术创作场景中,这些提示可以是对画面内容的描述、音乐风格的界定等。例如,当使用图像生成模型时,输入“一幅以秋天森林为主题,充满暖色调,有阳光透过树叶缝隙洒下的油画”这样的提示,模型便会尝试依据此描述生成相应的图像。

2025-09-11 03:00:11 384

原创 从零搭建到性能优化:AI提示系统架构全流程实战,提示工程架构师的实践指南

在"""提示渲染请求模型"""user_id: int = Field(..., description="用户ID")user_query: str = Field(..., description="用户问题")template_name: str = Field(..., description="模板名称(如customer_service)")在中添加。

2025-09-11 01:28:12 310

原创 上下文工程+知识图谱:提示工程架构师构建智能医疗诊断知识库的实战教程

在智能医疗领域,「准确诊断」是核心目标——但纯大模型(如GPT-4)的「幻觉问题」和「领域知识滞后」始终是致命缺陷:而**「上下文工程+知识图谱」的组合**,正是解决这两个问题的关键:本文将以「社区常见疾病智能诊断知识库」为例,从概念原理→实战开发→优化迭代,手把手教你构建一个「可靠、可扩展」的智能医疗诊断系统。在进入实战前,我们需要先明确两个核心概念在医疗场景中的具体含义:上下文工程(Context Engineering)是**「为大模型构建精准输入」的技术**,其核心目标是:将「用户问题」「领域知识

2025-09-11 00:06:14 364

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除