自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 comsec作业五:椭圆曲线

comsec作业五

2022-11-15 20:10:52 215 1

原创 cinta常用定理

comsec所需了解的cinta内容

2022-11-15 15:43:10 179

原创 comsec作业二:AES

comsec作业二:AES

2022-10-06 21:43:59 483

原创 CINTA作业九:QR

1、验证命题11.2由命题11.3知QR∗QR=QR,封闭性得证。由命题11.3知QR*QR=QR,封闭性得证。由命题11.3知QR∗QR=QR,封闭性得证。设∀a,b,c∈QR,则有设\forall a,b,c∈QR,则有设∀a,b,c∈QR,则有{a=x12b=x22c=x32\left\{ \begin{array}{c} a=x_1^2 \\ b=x_2^2 \\ c=x_3^2\end{array}\right. ⎩⎨⎧​a=x12​b=x22​c=x32​​则易得(a

2021-12-14 21:01:02 132

原创 CINTA作业八:CRT

由题得221=17∗13由题得221=17*13由题得221=17∗13又2000%17=11又2000\%17=11又2000%17=11又2000%13=11又2000\%13=11又2000%13=11由中国剩余定理代数版由中国剩余定理代数版由中国剩余定理代数版得20002019=([112019mod17],[112019mod17])得2000^{2019} =([11^{2019}mod17],[11^{2019}mod17])得20002019=([112019mod17],[112.

2021-12-06 01:54:38 333

原创 数据结构作业一:顺序表和链表

1、合并两个顺序表并对其中元素排序//合并List mergeList(List A, List B){ List C = MakeEmpty(); //先把A和B先后一起插入C中 for (int i = 0; i <=A->Last+B->Last+1; i++) { int j = A->Last + 1; if (i > A->Last) //判断A是否插完,是则开始插B

2021-10-30 14:51:04 135

原创 CINTA作业三:同余、模指数、费尔马小定理、欧拉定理

1、实现求乘法逆元的函数,给定a和m,求a模m的乘法逆元,无解时请给出无解提示,并且只返回正整数。进而给出求解同余方程(ax = b mod m)的函数,即给定a,b,m,输出满足方程的x,无解给出无解提示。附:由上一题的egcd算法如下,又求乘法逆元存在的前提是题目中的gcd(a,m)=1,故以此为判断是否有解的条件,其中//求c的乘法逆元int changed_egcd(int m, int c){ int* arr = new int[3]; int r0, r1, s0, s1;

2021-10-12 22:54:13 347

原创 CINTA扩展作业一:Bezout定理推广版本

1、请证明以下定理: 对任意n个正整数,它们的最大公因子d是这n个整数的某个整数的线性组合,即d = a0 s0 + a1 s1 + a2 s2 + … + a_{n-1} s_{n-1},即s_i 都是整数。由命题1.1归纳推理若c | a0,c | a1,对任意m0,n0∈Z,有c | (a0m0+a1n0)设q=a0m+a1n,则c | q且存在整数g 有c | g故存在m1,n1∈Z使得c | (qm1+gn1)即c | (a0m0m1+a1n0m1+gn1)则可得推论:如果存在

2021-10-06 16:50:48 278

原创 CINTA作业二、GCD与EGCD

@[TOC]1、给出Bezout定理的完整证明。

2021-10-05 21:32:38 190

原创 CINTA作业一、加减乘除

1.定理1.1的证明(除法算法)。构造集合S = {a − bk : k ∈ Z 且 a − bk ≥ 0}。①存在性:(其中0≤r已经得到教材证明)易知集合非空,由良序原则,知存在一个最小元 r∈S,且r =a − bk 。若r ≥ b,则可设r = b+m由r和b均为整数,易知m也为自然数又r=a − bk则可得m=a− (b+1)k易知m<r,与良序原则冲突故r ≥ b不成立r<b得证。②唯一性:假设不唯一,即存在两个整数对q1、r1和q2、r2使得等式成立,其中q1≠q2,

2021-09-20 21:11:15 239

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除