AcWing 1057. 股票买卖 IV(线性dp状态机模型)

题目描述

给定一个长度为 N 的数组,数组中的第 i 个数字表示一个给定股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润,你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。一次买入卖出合为一笔交易。

输入格式

第一行包含整数 N 和 k,表示数组的长度以及你可以完成的最大交易数量。

第二行包含 N 个不超过 10000 的正整数,表示完整的数组。

输出格式

输出一个整数,表示最大利润。

数据范围

1≤N≤1e5,
1≤k≤100

输入样例1:

3 2
2 4 1

输出样例1:

2

输入样例2:

6 2
3 2 6 5 0 3

输出样例2:

7

样例解释

样例1:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

样例2:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。共计利润 4+3 = 7.

题目分析:

这个题目很容易的可以拆分成两种状态,买入还是没买入,那么就可以用一个三维数组f[ i ][ j ][ 0 ] 表示前 i 天中交易次数是j当前状况为未买入的值,f[ i ][ j ][ 1 ]表示前i 天中交易次数是j当前状况为买入的值 ,那么就可以想到状态转移方程了,f[ i ] [ j ][ 0 ] = max(f[i-1][j][0] , f[i-1][j-1][1] + w[i]) ,
f[i][j][1] = max(f[i-1][j][1] , f[i-1][j][0] - w[i]) , 这个题还要注意的就是初始化,因为一开始是没有买股票的,所以说第三维状态不可能是0,所以说可以先把所有的数组都初始化成负无穷,然后把f[i][i][0]初始化成0,最后要记住咱们的状态是正好为j个,所以还要枚举一下j然后求最大值,请看下面代码

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 100010,M = 110,inf = 0x3f3f3f3f;
int f[N][M][2],w[N];

int main(){
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%d",&w[i]);
    memset(f,-inf,sizeof f);
    for(int i=0;i<=n;i++) f[i][0][0] = 0;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            f[i][j][0] = max(f[i-1][j][0],f[i-1][j][1] + w[i]);
            f[i][j][1] = max(f[i-1][j][1],f[i-1][j-1][0] - w[i]);
        }
    }
    int ans = 0;
    for(int i=0;i<=m;i++) ans = max(ans,f[n][i][0]);
    cout<<ans<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宇智波一打七~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值