题目描述
给定一个长度为 N 的数组,数组中的第 i 个数字表示一个给定股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润,你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。一次买入卖出合为一笔交易。
输入格式
第一行包含整数 N 和 k,表示数组的长度以及你可以完成的最大交易数量。
第二行包含 N 个不超过 10000 的正整数,表示完整的数组。
输出格式
输出一个整数,表示最大利润。
数据范围
1≤N≤1e5,
1≤k≤100
输入样例1:
3 2
2 4 1
输出样例1:
2
输入样例2:
6 2
3 2 6 5 0 3
输出样例2:
7
样例解释
样例1:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
样例2:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。共计利润 4+3 = 7.
题目分析:
这个题目很容易的可以拆分成两种状态,买入还是没买入,那么就可以用一个三维数组f[ i ][ j ][ 0 ] 表示前 i 天中交易次数是j当前状况为未买入的值,f[ i ][ j ][ 1 ]表示前i 天中交易次数是j当前状况为买入的值 ,那么就可以想到状态转移方程了,f[ i ] [ j ][ 0 ] = max(f[i-1][j][0] , f[i-1][j-1][1] + w[i]) ,
f[i][j][1] = max(f[i-1][j][1] , f[i-1][j][0] - w[i]) , 这个题还要注意的就是初始化,因为一开始是没有买股票的,所以说第三维状态不可能是0,所以说可以先把所有的数组都初始化成负无穷,然后把f[i][i][0]初始化成0,最后要记住咱们的状态是正好为j个,所以还要枚举一下j然后求最大值,请看下面代码
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 100010,M = 110,inf = 0x3f3f3f3f;
int f[N][M][2],w[N];
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&w[i]);
memset(f,-inf,sizeof f);
for(int i=0;i<=n;i++) f[i][0][0] = 0;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
f[i][j][0] = max(f[i-1][j][0],f[i-1][j][1] + w[i]);
f[i][j][1] = max(f[i-1][j][1],f[i-1][j-1][0] - w[i]);
}
}
int ans = 0;
for(int i=0;i<=m;i++) ans = max(ans,f[n][i][0]);
cout<<ans<<endl;
return 0;
}