【ACWing 1223 最大比例】最大公约数+辗转相减法

题目传送门

题意:

有一个M个数的等比数列,现在从中挑选出N个数,问最大可能的公比是多少?

解析:

首先从小到大排个序,为什么从小到大排序呢,因为咱们求的是最大的公比鸭,所以说公比一定是大于1的啦,然后每个数都可以写成a0*(p/q)^k*s,在这里s是根据每个数的不同而变化的,k指的是所有指数的最大公约数,那么从第二项开始到第N项除以第一项以后所剩下的一定是公比的幂次了,咱们现在就是求这个公比的幂次最大化,那么就是所有的指数的最大公约数,所以说问题就落在了求公比的所有指数的最大公约数上了,因为公比是分数的形式,分子分母都是相同的幂次,所以说可以分开求,保证了整数运算所带来的便捷性,求幂次的最大公约数就不能用辗转相除法了,因为幂次上的数进行除法还得开根号什么的特别麻烦,虽然是logn的复杂度,但是还是实现起来不太好,现在就有了这个辗转相减法,原理就是gcd(x,y) = gcd(y,x-y),前提条件是x > y,虽然说这个方法的复杂度是o(N)的,但是咱们这个数据量有点小,不超过40,所以说没问题,指数上的减法可以看作是数的除法,下面请看代码:

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 110;
typedef long long LL;
LL n,cnt;
LL x[N],a[N],b[N];
LL gcd(LL x,LL y){
    if(x < y) swap(x,y);
    if(y == 1) return x;
    return gcd(y,x/y);
}
int main(){
    cin>>n;
    for(int i=1;i<=n;i++) cin>>x[i];
    sort(x+1,x+1+n);
    for(int i=1;i<=n;i++){
        if(x[i] != x[i-1]){
            LL d = __gcd(x[i],x[1]);
            a[cnt] = x[i]/d;
            b[cnt++] = x[1]/d;
        }
    }
    LL up = a[0],down = b[0];
    for(int i=1;i<cnt;i++){
        up = gcd(up,a[i]);
        down = gcd(down,b[i]);
    }
    cout<<up<<"/"<<down<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宇智波一打七~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值