题意:
有一个M个数的等比数列,现在从中挑选出N个数,问最大可能的公比是多少?
解析:
首先从小到大排个序,为什么从小到大排序呢,因为咱们求的是最大的公比鸭,所以说公比一定是大于1的啦,然后每个数都可以写成a0*(p/q)^k*s,在这里s是根据每个数的不同而变化的,k指的是所有指数的最大公约数,那么从第二项开始到第N项除以第一项以后所剩下的一定是公比的幂次了,咱们现在就是求这个公比的幂次最大化,那么就是所有的指数的最大公约数,所以说问题就落在了求公比的所有指数的最大公约数上了,因为公比是分数的形式,分子分母都是相同的幂次,所以说可以分开求,保证了整数运算所带来的便捷性,求幂次的最大公约数就不能用辗转相除法了,因为幂次上的数进行除法还得开根号什么的特别麻烦,虽然是logn的复杂度,但是还是实现起来不太好,现在就有了这个辗转相减法,原理就是gcd(x,y) = gcd(y,x-y),前提条件是x > y,虽然说这个方法的复杂度是o(N)的,但是咱们这个数据量有点小,不超过40,所以说没问题,指数上的减法可以看作是数的除法,下面请看代码:
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 110;
typedef long long LL;
LL n,cnt;
LL x[N],a[N],b[N];
LL gcd(LL x,LL y){
if(x < y) swap(x,y);
if(y == 1) return x;
return gcd(y,x/y);
}
int main(){
cin>>n;
for(int i=1;i<=n;i++) cin>>x[i];
sort(x+1,x+1+n);
for(int i=1;i<=n;i++){
if(x[i] != x[i-1]){
LL d = __gcd(x[i],x[1]);
a[cnt] = x[i]/d;
b[cnt++] = x[1]/d;
}
}
LL up = a[0],down = b[0];
for(int i=1;i<cnt;i++){
up = gcd(up,a[i]);
down = gcd(down,b[i]);
}
cout<<up<<"/"<<down<<endl;
return 0;
}