题目链接
题意:
一个"10"能被"0"替换,一个"01"能被"1"替换,给你一个长度为n的01串,问有多少子串能通过变换成为长度为1的串
分析:
首先想到的就是DP了,f[i][0]表示的是以第i个元素结尾的能变换成"0"这个字母的所有方案数,f[i][1]表示的是以第i个元素结尾的能变换成"1"这个字母的所有方案数,那么当第i个元素是’0’时,f[i][0]能从f[i-1][1]来转移过来,而且还要+1,因为它本身就算是一个,这样子得出的结果是少的,因为000这种和111这种没算进去,f[i][0]的更新110这种也要算进去的,那么就把fi][2]表示成以第i个元素结尾,能形成00这种结尾的方案数,把f[i][3]表示成能形成11这种结尾的方案数,具体请看代码:
#include<bits/stdc++.h>
using namespace std;
const int N = 200010;
char s[N];
long long f[N][4];
void solve(){
int n;
scanf("%d%s",&n,s+1);
long long ans = 0;
for(int i=1;i<=n;i++){
if(s[i] == '0'){
f[i][0] = f[i-1][1] + 1 + f[i-1][3];
f[i][1] = 0;
f[i][2] = f[i-1][0] + f[i-1][2];
f[i][3] = 0;
}
else{
f[i][0] = 0;
f[i][1] = f[i-1][0] + 1 + f[i-1][2];
f[i][2] = 0;
f[i][3] = f[i-1][1] + f[i-1][3];
}
ans += f[i][0] + f[i][1];
}
cout<<ans<<endl;
}
int main(){
int _;
scanf("%d",&_);
while(_--) solve();
return 0;
}