时间限制: 1 Sec 内存限制: 32 MB
提交: 667 解决: 410
题目描述
二叉排序树或者是一棵空树,或者是具有以下几条性质的二叉树:
1. 若它的左子树不空,则左子树上所有结点的值均小于它的根节点的值;
2. 若它的右子树不空,则右子树上所有结点的值均大于它的根节点的值;
3. 它的左右子树也分别为二叉排序树。
二叉排序树又可以被称为二叉查找树,根据上述定义的结构不难知道,它的查找过程十分简单,只需要通过不断的将当前结点的值与需要查找的值进行比较,如果相等则直接输出,如果要查找的值更小则深入至左子树进行比较,否则就深入右子树进行比较,直到找到相应的值或者进入了一棵不存在的子树为止。
其查找过程可以描述如下:
而其插入过程同样也十分简洁,可以描述如下:
而删除操作可以描述为如下的两个算法:
在本题中,读入一串整数,首先利用这些整数构造一棵二叉排序树。另外给定多次查询,利用构造出的二叉排序树,判断每一次查询是否成功。
输入
输入的第一行包含2个正整数n和k,分别表示共有n个整数和k次查询。其中n不超过500,k同样不超过500。
第二行包含n个用空格隔开的正整数,表示n个整数。
第三行包含k个用空格隔开的正整数,表示k次查询的目标。
输出
只有1行,包含k个整数,分别表示每一次的查询结果。如果在查询中找到了对应的整数,则输出1,否则输出0。
请在每个整数后输出一个空格,并请注意行尾输出换行。
样例输入
8 3 1 3 5 7 8 9 10 15 9 2 5
样例输出
1 0 1
提示
在本题中,首先需要按照题目描述中的算法完成二叉排序树的构造过程,之后需要通过在二叉排序树中的不断向下查找,将需要查询的值与当前节点的值进行比较,直到确定被查询的值是否存在。
通过课本中的性能分析部分,不难发现二叉排序树的平均查找长度是和logn同数量级的,但是,在某些特殊情况下二叉排序树将会退化,使查找的效率大大降低,这时就需要引入二叉排序树的平衡操作,利用平衡二叉树来保证查找的效率始终维持在log(n)的数量级上。
代码实现
#include <iostream>
using namespace std;
struct Tree{
int data;
Tree *lchild;
Tree *rchild;
};
Tree* insert_tree(Tree *&t,int k){
if(t==NULL){
t=new Tree;
t->data=k;
t->lchild=NULL;
t->rchild=NULL;
}
else if(t->data>k){insert_tree(t->lchild,k);}
else if(t->data<k){insert_tree(t->rchild,k);}
return t;
}
Tree* find_k1(Tree *&t,int k){
Tree *t2=t;
while(t2){
if(k==t2->data){return t2;}
else if(k>t2->data){t2=find_k1(t2->rchild,k);}
else if(k<t->data){t2=find_k1(t2->lchild,k);}
}
return NULL;
}
int main()
{
Tree *t;
t=NULL;
int n,m;
cin>>n>>m;
for(int i=0;i<n;i++){
int k;
cin>>k;
insert_tree(t,k);
}
int k1[m];
for(int i=0;i<m;i++){cin>>k1[i];}
for(int i=0;i<m;i++){
Tree *t1=find_k1(t,k1[i]);
if(t1==NULL){cout<<0<<" ";}
else{cout<<1<<" ";}
}
return 0;
}