有两种形状的瓷砖:一种是 2 x 1 的多米诺形,另一种是形如 “L“ 的托米诺形。两种形状都可以旋转。给定整数 n ,返回可以平铺 2 x n 的面板的方法的数量。返回对 109 + 7 取

本文介绍了一种计算2xn面板上使用多米诺2x1和L形托米诺瓷砖平铺方法数量的算法,通过动态规划求解,并给出示例和代码实现。结果返回值对10^9+7取模。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有两种形状的瓷砖:一种是 2 x 1 的多米诺形,另一种是形如 "L" 的托米诺形。两种形状都可以旋转。

给定整数 n ,返回可以平铺 2 x n 的面板的方法的数量。返回对 109 + 7 取模 的值。

平铺指的是每个正方形都必须有瓷砖覆盖。两个平铺不同,当且仅当面板上有四个方向上的相邻单元中的两个,使得恰好有一个平铺有一个瓷砖占据两个正方形。

示例 1:

输入: n = 3
输出: 5
解释: 五种不同的方法如上所示。

示例 2:

输入: n = 1
输出: 1

提示:

  • 1 <= n <= 1000

class Solution:

    def numTilings(self, n: int) -> int:

        MOD = 10 ** 9 + 7

        dp = [[0] * 4 for _ in range(n + 1)]

        dp[0][3] = 1

        for i in range(1, n + 1):

            dp[i][0] = dp[i - 1][3]

            dp[i][1] = (dp[i - 1][0] + dp[i - 1][2]) % MOD

            dp[i][2] = (dp[i - 1][0] + dp[i - 1][1]) % MOD

            dp[i][3] = (((dp[i - 1][0] + dp[i - 1][1]) % MOD + dp[i - 1][2]) % MOD + dp[i - 1][3]) % MOD

        return dp[n][3]

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值