自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 资源 (2)
  • 收藏
  • 关注

原创 【故障诊断】基于PSO优化VMD参数(自适应VMD)

针对滚动轴承早期故障特征提取困难的问题,提出一种基于参数优化变分模态分解的轴承早期故障诊断方法。首先利用粒子群优化算法对变分模态分解算法的最佳影响参数组合进行搜索,搜索结束后根据所得结果设定变分模态分解算法的惩罚参数和分量个数,并利用参数优化变分模态分解算法对故障信号进行处理。

2023-04-27 23:02:34 1915 3

原创 markdown用法

Markdown是一种轻量型标记语言, 是一种语法. 以.md结尾的文本文件就是 Markdown 文件. 相较于Word, 它更加像是HTML语言或是LaTeX\LaTeXLATE​X, 并不是最淳朴的那种"所见即所得". 它处处透露着一种极简主义. 高效简洁清晰的同时, 又很简单. 看起来舒服, 语法简单, 尤其在处理纯文本上有很大的优势.它相较于Word, 兼容性非常高, 可以跨平台使用, 不用担心奇奇怪怪的版本兼容问题. 同时, 有许多网站都支持或正在使用Markdown语法. 如。

2023-04-07 12:03:44 759 1

原创 基于混沌映射的粒子群算法

混沌映射是一类具有高度复杂性和随机性质的非线性动力系统,它具有敏感依赖于初值和参数的特点,可以产生看似无规律的运动轨迹。基于混沌映射的粒子群算法(Chaotic Particle Swarm Optimization,CPSO)则是利用混沌映射的这种随机性质,来增强粒子群算法的全局搜索能力。CPSO算法与传统粒子群算法的主要区别在于,它使用混沌映射生成随机数序列来代替传统粒子群算法中使用的伪随机数序列,以增加算法的随机性和多样性。

2023-02-27 18:56:05 5638

原创 自适应粒子群优化(Adaptive Particle Swarm Optimization,APSO

下面是一个关于自适应粒子群优化(Adaptive Particle Swarm Optimization,APSO)的博客,希望可以帮助您。提示:以下是本篇文章正文内容,下面案例可供参考在上面的代码中,表示粒子的数量,表示解空间的维度,表示迭代次数,表示优化的目标函数。在__init__方法中,我们初始化了粒子群的位置和速度,并将每个粒子的位置作为其最优解,将其适应度值初始化为正无穷。我们还初始化了学习因子和惯性权重的参数。在run方法中,我们迭代了次,计算每个粒子的适应度值和最优解。

2023-02-24 16:45:44 7392 4

原创 学习小波阈值去噪(一维数据)

小波阈值用例子介绍小波阈值去噪

2022-05-20 14:48:22 3333 1

基于自适应粒子群优化(Adaptive Particle Swarm Optimization,APSO)的Python示例代码

自适应粒子群优化是一种优化算法,它是粒子群优化(Particle Swarm Optimization,PSO)的一种变体。与传统的PSO不同,APSO使用自适应策略来调整算法的参数,以提高算法的性能和收敛速度。 APSO的主要思想是根据群体的收敛情况动态调整算法的参数。APSO的核心算法与PSO类似,由粒子的速度和位置更新规则组成。每个粒子通过与局部最优解和全局最优解比较来更新自己的位置和速度。 APSO的另一个关键之处是学习因子的自适应调整。在每个迭代中,APSO会计算每个粒子的适应度值。如果适应度值的方差较小,则学习因子的值会变小,以便更加收敛到最优解。相反,如果适应度值的方差较大,则学习因子的值会变大,以便更好地探索解空间。

2023-02-24

美国西储大学轴承寿命预测

美国西储大学轴承寿命预测

2021-12-15

美国西储大学轴承数据分析

峰峰值+均方差+峭度+波形因子+裕度因子

2021-12-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除