- 博客(2)
- 收藏
- 关注
原创 元学习+强化学习(自用)
那么这里就会有个问题,同样都是情感的2分类数据,但是因为背景不同,这3类数据集信息的细节上是存在一定差异的,如果是直接粗暴的把这3类数据集混合在一起训练,那么也能得到一套很不错的模型参数,同样在这3类任务上也能得到一个不错的表现,但是此时如果来了第4种数据源的情感文本数据集(比如美食评价的情感数据),而且第4种数据集很少,那么模型在第4种数据集上进行训练,模型的参数更新的过程可能会比较受限,其原因是第4种数据集太少了,不足以撼动在前3种丰富的数据集上学习到的参数内容。内循环用到的数据集是支持集。
2023-11-11 18:26:39 871
原创 文献阅读:基于元强化学习的边缘计算快速自适应任务卸载
本文提出了一种基于元强化学习的任务卸载方法,该方法可以在少量梯度更新和样本的情况下快速适应新环境。该方法将移动应用程序建模为有向无环图(DAG),将计算迁移过程转换为序列预测过程,并通过自定义序列到序列(seq2seq)神经网络进行卸载策略。为了有效地训练seq2seq网络,提出了一种一阶近似来降低训练成本和裁剪替代目标协同的方法。评估在以下场景1)异构用户对移动应用的个人偏好,将其表示为具有不同高度、宽度和任务数量的DAG。2)根据UE与MEC主机之间的距离变化传输速率。针对不同的DAG。
2023-10-10 18:27:48 607 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人