1、数据
2、过程
(1)相关模型
(2)在坐标系上作观测数据的散点图
散点图:
连线之后:
人口总预测:
从图中可以看出,全国总人口先增长后减少,在2015年到2020年间达到最大值,最大值不超过14.5亿。到2050年人口总数少于1.15亿。
城镇老龄化:
乡村老龄化:
分析图像:城镇和乡村的总人口均出现先增长后下降的趋势,老龄化问题严重,老龄化指数随时间持续增长。
参考文献:
姜启源,数学模型 ,高等教育出版社
相关代码:
%总人口
x= [2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021] ;
y=[12.67 12.76 12.85 12.92 13 13.08 13.15 13.21 13.28 13.35 13.41 13.49 13.59 13.67 13.77 13.83 13.92 14 14.05 14.1];
x1=1949:10:1994;
a=polyfit(x,y,1);
plot (x,y);
%相关函数
function Q=untitled(k,h,doo,do)
Q=zeros(90,90);
for i=1:90
Q(1,i)=[zeros(1,14),(1-doo)*(1-do).*h.*k,zeros(1,41)];
end
function P=die(d)
P=zeros(90,90);
for i=2:90
for j=1:90
if i-j==1
P(i,j)=1-d(j)/1000;
end
end
end
function a=drate0(n,b,k,X)
doo=0.028;
a(1)=304.0351357;
for i=2:n
ft=b.*k.*X(15:49,i);
a(i)=(1-doo)*sum(ft)/1000;
end
function W=fdata2(A,B,x,m,n)
W(:,1)=x;
for i=2:n
W(:,i)=A*W(:,i-1)+m*B*W(:,i-1);
end
%城镇老龄化
m=input('输入总和生育率:');
n=input('输入预测年数:');
A2=die(d2);
B2=born(k2',h2',doo,do);
X2=fdata2(A2,B2,x2,m,n);
A01=drate0(n,b2,k2,X2);
A01(1)=183.6003631;
p2=sum(X2)+x02;
s2=sum(qB);
w2=R2/s2;
figure(3)
plot(t,w2);
title('城镇老龄化指数');
%--------2001,2010,2020,2030,2050的各指数---------
n1=[p2(1),p2(10),p2(20),p2(30),p2(50)];
n2=[R2(1),R2(10),R2(20),R2(30),R2(50)];
n3=[w2(1),w2(10),w2(20),w2(30),w2(50)];
%乡村老龄化
m=input('输入总和生育率:');
n=input('输入预测年数:');
A3=die(d3);
B3=born(k3',h3',doo,do);
X3=fdata2(A3,B3,x3,m,n);
x03=drate0(n,b3,k3,X3);
x03(1)=1002.516997;
p3=sum(X3)+x03;
s3=sum(qB);
w3=R3/s3;
figure(3)
plot(t,w3);
title('乡村老龄化指数');
%--------2001,2010,2020,2030,2050的各指数---------
n1=[p3(1),p3(10),p3(20),p3(30),p3(50)];
n2=[R3(1),R3(10),R3(20),R3(30),R3(50)];
n3=[w3(1),w3(10),w3(20),w3(30),w3(50)];