Day15(计算几何)

基础部分

高精度圆周率
const double pi = acos(-1.0);
偏差值
const double eps = 1e-8;
sgn
int sgn(double x) { // 判断x是否等于0
   if (fabs(x) < eps)
      return 0;
   else
      return x < 0 ? -1 : 1;
}
dcmp
int dcmp(double x, double y) { // 比较两个浮点数,0为相等,-1为小于,1为大于
   if (fabs(x - y) < eps)
      return 0; 
   else
      return x < y ? -1 : 1; 
}

点和向量

struct Point { 
    double x, y; 
    Point() {} 
    Point(double x, double y) : x(x), y(y) {} 
};
两点间距离
double Dist(Point A, Point B) {
    // 1: return hypot(A.x - B.x, A.y - B.y); 
    // 2: return sqrt((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)); 
}
向量
typedef Point Vector;
向量的运算
struct Point {
     double x, y; 
     Point() {} 
     Point(double x, double y) : x(x), y(y) {} Point operator+(Point B) { return Point(x + B.x, y + B.y); } 
 // 加
     Point operator-(Point B) { return Point(x - B.x, y - B.y); } 
 // 减
     Point operator*(double k) { return Point(x * k, y * k); } 
 // 乘
     Point operator/(double k) { return Point(x / k, y / k); } 
 // 除
     bool operator==(Point B) { return sgn(x - B.x) == 0 && sgn(y - B.y) == 0; } 
 // 等于 
};

点积

定义:A·B=|A||B|cosθ
几何意义

θ:表示向量b与向量a的夹角
向量b在向量a上的投影长度乘以向量a的模长

double Dot(Vector A, Vector B) {
    return A.x * B.x + A.y * B.y; 
}
应用
  1. 判断向量 与向量 的夹角是钝角还是锐角
    若 Dot(A,B) > 0,说明向量 与向量 的夹角是锐角
    若 Dot(A,B) == 0,说明向量 与向量 的夹角是直角
    若 Dot(A,B) < 0,说明向量 与向量 的夹角是钝角
  2. 求向量A的模长
double Len(Vector A) {
    return sqrt(Dot(A, A)); 
}
  1. 求向量A模长的平方
double Len2(Vector A) {
    return Dot(A, A); 
}
  1. 求向量 与向量 的夹角大小
double Angle(Vector A, Vector B) {
    return acos(Dot(A, B) / Len(A) / Len(B)); 
}

叉积

定义:AxB=|A||B|sinθ
几何意义

θ:向量a旋转到向量b所经过的夹角
| a x b |在数值上等于由向量a和向量b构成的平行四边形的面积

double Cross(Vector A, Vector B) {
    return A.x * B.y - A.y * B.x; 
}
应用
  1. 判断向量A与向量B的方向关系
    若A x B > 0,B在A的逆时针方向
    若A x B = 0,B与A共线,可能是同方向,也可能是反方向
    若A x B < 0,B在A的顺时针方向
  2. 计算两向量构成的平行四边形的有向面积
double Area2(Point A, Point B, Point C) {
    return Cross(B - A, C - A); 
}
  1. 向量旋转
    向量A逆时针旋转的角度为rad
    有时需要求单位法向量,即逆时针旋转90°,然后取单位值
Vector Rotate(Vector A, double rad) {
    return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad)); 
}
Vector Normal(Vector A) {
    return Vector(-A.y / Len(A), A.x / Len(A)); 
}
  1. 用叉积检查两个向量是否平行或重合
bool Parallel(Vector A, Vector B) {
    return sgn(Cross(A, B)) == 0; 
}

点和线

struct Line { // 直线
    Point p1, p2; // 线上的两个点 
    Line() {} 
    // 直接用两个点来构造直线 
    Line(Point p1, Point p2) : p1(p1), p2(p2) {} 
    // 根据一个点和倾斜角angle确定直线,0≤angle≤pi 
    Line(Point p, double angle) { 
        p1 = p; 
        if (sgn(angle - pi / 2) == 0) 
            p2 = (p1 + Point(0, 1)); 
        else
            p2 = (p1 + Point(1, tan(angle))); 
    }
    // ax + by + c = 0 
    Line(double a, double b, double c) { 
        if (sgn(a) == 0) {
            p1 = Point(0, -c / b); 
            p2 = Point(1, -c / b); 
        } 
        else if (sgn(b) == 0) { 
            p1 = Point(-c / a, 0); 
            p2 = Point(-c / a, 1); 
        } 
        else { 
            p1 = Point(0, -c / b); 
            p2 = Point(1, (-c - a) / b); 
        } 
    } 
};
线段的表示
typedef Line Segment;
点和直线的位置关系

用直线v上的两点p1和p2与点p构成两个向量,用叉积的正负判断方向,得到相对的位置关系

int Point_line_relation(Point p, Line v) {
    int c = sgn(Cross(p - v.p1, v.p2 - v.p1)); 
    if (c < 0) // 1:p在v的左边 
        return 1; 
    if (c > 0) // 2:p在v的右边 
        return 2; 
    return 0; // 0:p在v上 
}
点和线段的位置关系

判断点p是否在线段v上,先用叉积判断是否共线,然后用点积看p和v的两个端点产生的角是否为钝角

bool Point_on_seg(Point p, Line v) { // 0为点不在线段v上;1为点在线段v上 
    return sgn(Cross(p - v.p1, v.p2 - v.p1)) == 0 && sgn(Dot(p - v.p1, p - v.p2)) <= 0; 
}
点到直线的距离
double Dis_point_line(Point p, Line v) { 
     return fabs(Cross(p - v.p1, v.p2 - v.p1)) / Dist(v.p1, v.p2); 
}
点在直线上的投影
Point Point_line_proj(Point p, Line v) { // 点p在直线v上的投影 
    double k = Dot(v.p2 - v.p1, p - v.p1) / Len2(v.p2 - v.p1); 
    return v.p1 + (v.p2 - v.p1) * k; 
}
点关于直线的对称点
Point Point_line_symmetry(Point p, Line v) { // 点p关于直线v的对称点 
    Point q = Point_line_proj(p, v); 
    return Point(2 * q.x - p.x, 2 * q.y - p.y); 
}
点到线段的距离

对于点p到线段v(p1,p2)的距离,在一下3个距离中取最小值:从p出发对线段v做垂线,如果交点在v上,这个距离就是最小值;p到p1的距离,p到p2的距离

double Dis_point_seg(Point p, Segment v) { 
    if (sgn(Dot(p - v.p1, v.p2 - v.p1)) < 0 || sgn(Dot(p - v.p2, v.p1 - v.p2)) < 0) 
        return min(Dist(p, v.p1), Dist(p, v.p2)); 
    return Dis_point_line(p, v); 
}
两条直线的位置关系
int Line_relation(Line v1, Line v2) { 
    if (sgn(Cross(v1.p2 - v1.p1, v2.p2 - v2.p1)) == 0) { 
        if (Point_line_relation(v1.p1, v2) == 0) 
            return 1; // 1:重合 
        else
            return 0; // 0:平行 
    }
    return 2; // 2:相交 
}
求两条直线的交点
Point Cross_point(Point a, Point b, Point c, Point d) { // Line: ab, Line: cd 
    double s1 = Cross(b - a, c - a); 
    double s2 = Cross(b - a, d - a); 
    return Point(c.x * s2 - d.x * s1, c.y * s2 - d.y * s1) / (s2 - s1); 
}
判断两个线段是否规范相交

这里利用叉积有正负的特点。如果一条线段的两端在另一条线段的两侧,那么两个端点与另一线段产生的两个叉积的正负相反,也就是说两个叉积相乘为负。如果两条线段互相满足这一点,那么就是规范相交的。

规范相交:交点在线段内部

非规范相交:交点在某条线段的端点

bool Cross_segment(Point a, Point b, Point c, Point d) { 
    // 规范相交 
    double c1 = Cross(b - a, c - a), c2 = Cross(b - a, d - a); 
    double d1 = Cross(d - c, a - c), d2 = Cross(d - c, b - c); 
    return sgn(c1) * sgn(c2) < 0 && sgn(d1) * sgn(d2) < 0; // 1: 相交,0: 不相交 

    // 非规范相交 
    return max(a.x, b.x) >= min(c.x, d.x) && max(c.x, d.x) >= min(a.x, b.x) && 
           max(a.y, b.y) >= min(c.y, d.y) && max(c.y, d.y) >= min(a.y, b.y) && 
           sgn(Cross(b - a, c - a)) * sgn(Cross(b - a, d - a)) <= 0 && 
           sgn(Cross(d - c, a - c)) * sgn(Cross(d - c, b - c)) <= 0; 
}

多边形

Point p[N];
应用
  1. 判断点是否在多边形内部
int Point_in_polygon(Point pt, Point* p, int n) { // 点pt,多边形Point* p 
    for (int i = 0; i < n; ++i) 
        if (p[i] == pt)
            return 3; // 3: 点在多边形的顶点上 
    for (int i = 0; i < n; ++i) { 
        Line v = Line(p[i], p[(i + 1) % n]); 
        if (Point_on_seg(pt, v)) 
            return 2; // 2: 点在多边形的边上 
    }
    int num = 0; 
    for (int i = 0; i < n; ++i) { 
    int j = (i + 1) % n; 
    int c = sgn(Cross(pt - p[j], p[i] - p[j])); 
    int u = sgn(p[i].y - pt.y); 
    int v = sgn(p[j].y - pt.y); 
    if (c > 0 && u < 0 && v >= 0) 
        ++num; 
    if (c < 0 && u >= 0 && v < 0) 
        --num; 
    }
    return num != 0; // 1: 点在内部;0: 点在外部 
}
  1. 多边形的面积
double Polygon_area(Point* p, int n) { 
    double area = 0; 
    for (int i = 0; i < n; ++i) 
        area += Cross(p[i], p[(i + 1) % n]); 
    return area / 2; 
}
  1. 求多边形的重心
Point Polygon_center(Point* p, int n) { 
    Point ans(0, 0); 
    if (Polygon_area(p, n) == 0) 
        return ans; 
    for (int i = 0; i < n; ++i) 
        ans = ans + (p[i] + p[(i + 1) % n]) * Cross(p[i], p[(i + 1) % n]); 
    return ans / Polygon_area(p, n) / 6; 
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值