1. Geom的面在其参数空间都是正方形
- 例如球面
参数定义:
u (经度): [0, 2π] 水平方向
v (纬度): [-π/2, π/2] 垂直方向
参数平面示意图:
v=π/2 +---------------+
| 北极点(缩退) |
| |
v=0 | |
| |
v=-π/2 | 南极点(缩退) |
+---------------+
u=0 u=2π
1.三维曲面为何可以用两个参数的二维参数方程表示
- 对于曲面的参数方程来说,需要且仅需要两个参数来唯一确定曲面上的点
- 三维曲面的拓扑维度是二维的
- 在曲面上移动只有两个独立的自由度
- 描述曲面的内在维度,也就是描述物体本身需要的最少参数量是2
2. 参数化在计算机图形学中的应用
以球面的参数化为例(球面中的u,v其实就是经度纬度)
- 球面网格生成:通过均匀采样u和v,可以生成球面上的点网格,点可以形成三角形网格,传入到opengl中进行渲染
- 纹理映射:参数u,v可以直接用于纹理坐标
3. OCC中有三维参数方程吗?
没有
- 曲线: 一维参数方程
- 曲面:二维参数方程
- 实体: 使用边界表示法B-Rep(Solid->shell->face->wire->edge->vertex),实体的边界是由参数化曲面组成的壳组成的
4. 拓扑点和几何点的关系( TopoDS_Vertex和BRep_TVertex)
- 拓扑的Vertex中包含BRep_TVertex的基类TopoDS_TShape智能指针Handle,BRep_TVertex中包含实际的点gp_Pnt
- 构造一个拓扑Vertex的过程
5. 放样和扫略
- 放样只创建多个截面,然后平滑连接形成实体
- 扫略指一个截面加一个路径,截面沿路径扫略形成实体
图中,杯体是扫略形成,把手是多个截面放样形成的。