You are given two arrays a and b of positive integers, with length n and m respectively.
Let c be an n×m matrix, where ci,j=ai⋅bj.
You need to find a subrectangle of the matrix c such that the sum of its elements is at most x, and its area (the total number of elements) is the largest possible.
Formally, you need to find the largest number s such that it is possible to choose integers x1,x2,y1,y2 subject to 1≤x1≤x2≤n, 1≤y1≤y2≤m, (x2−x1+1)×(y2−y1+1)=s, and
∑
i
=
x
1
x
2
∑
i
=
y
1
y
2
c
i
,
j
<
=
x
\sum_{i=x1}^{x2}\sum_{i=y1}^{y2}c_i,_j<=x
i=x1∑x2i=y1∑y2ci,j<=x
Input
The first line contains two integers n and m (1≤n,m≤2000).
The second line contains n integers a1,a2,…,an (1≤ai≤2000).
The third line contains m integers b1,b2,…,bm (1≤bi≤2000).
The fourth line contains a single integer x (1≤x≤2⋅109).
Output
If it is possible to choose four integers x1,x2,y1,y2 such that 1≤x1≤x2≤n, 1≤y1≤y2≤m, and
∑
i
=
x
1
x
2
∑
i
=
y
1
y
2
c
i
,
j
<
=
x
\sum_{i=x1}^{x2}\sum_{i=y1}^{y2}c_i,_j<=x
i=x1∑x2i=y1∑y2ci,j<=x, output the largest value of (x2−x1+1)×(y2−y1+1) among all such quadruplets, otherwise output 0.
Examples
Input
3 3
1 2 3
1 2 3
9
Output
4
Input
5 1
5 4 2 4 5
2
5
Output
1
Note
Matrix from the first sample and the chosen subrectangle (of blue color):
Matrix from the second sample and the chosen subrectangle (of blue color):
题目大意:
给出两个数两组数构成一个矩阵,求该矩阵满足元素和<=x的子矩阵的最大面积为多少
如样例1
3 3
1 2 3
1 2 3
9
构成矩阵
1 2 3
2 4 6
3 6 9
满足元素和<=9的最大子矩阵是
1 2
3 4
面积为2*2=4
所以答案为4
解题思路:
先看3*3矩阵的构成
x0*y0 | x0*y1 | x0*y2 |
---|---|---|
x1*y0 | x1*y1 | x1*y2 |
x2*y0 | x2*y1 | x2*y2 |
大矩阵和
sum=x0*y0 + x0*y1 + x0*y2 + x1*y0 + x1*y1 + x1*y2 + x2*y0 + x2*y1 + x2*y2=(x0+x1+x2)*(y0+y1+y2)
容易发现任一一个子矩阵都可以转化成(xn+xn+1+xn+2+…+xn+k1)*(ym+ym+1+ym+2+…+yn+k2)
由此题目可以向前缀和方向思考,求出每个长度前缀的最小值,遍历一边所有结果便可得到答案
完整代码:
#include<iostream>
using namespace std;
int main()
{
long long n,m;
long long a[2010],b[2010],a2[2010],b2[2010];
long long x;
cin>>n>>m;
for(int i=1;i<=n;i++){
cin>>a[i];
a[i]+=a[i-1];
a2[i]=(1<<31)-1; //初始化
}
for(int i=1;i<=m;i++){
cin>>b[i];
b[i]+=b[i-1];
b2[i]=(1<<31)-1; //初始化
}
cin>>x;
for(int i=1;i<=n;i++){ //求每个长度的前缀和最小值
for(int j=0;j<=n-i;j++){
a2[i]=min(a2[i],a[j+i]-a[j]);
}
}
for(int i=1;i<=m;i++){ //求每个长度的前缀和最小值
for(int j=0;j<=m-i;j++){
b2[i]=min(b2[i],b[j+i]-b[j]);
}
}
int ret=0;
for(int i=1;i<=n;i++){ //遍历数组
for(int j=1;j<=m;j++){
if(a2[i]*b2[j]<=x){
ret=max(ret,i*j);
}
}
}
cout<<ret<<endl;
}