最大运行时间:1s
最大运行内存: 128M
题目描述:
小蓝学习了最短路径之后特别高兴,他定义了一个特别的图,希望找到图 中的最短路径。
小蓝的图由 2021 个结点组成,依次编号 1 至 2021。
对于两个不同的结点 a, b,如果 a 和 b 的差的绝对值大于 21,则两个结点 之间没有边相连;如果 a 和 b 的差的绝对值小于等于 21,则两个点之间有一条 长度为 a 和 b 的最小公倍数的无向边相连。
例如:结点 1 和结点 23 之间没有边相连;结点 3 和结点 24 之间有一条无 向边,长度为 24;结点 15 和结点 25 之间有一条无向边,长度为 75。
请计算,结点 1 和结点 2021 之间的最短路径长度是多少。
提示:建议使用计算机编程解决问题。
求出结点1 到 结点 2021 之间的最短路
emmmmmmm
先求出 每个点之间的距离
(注: 这是个无向图 所以只需要算 i 与 [i + 1, i + 21] 之间的数 求最小公倍数即可)
然后直接利用dijstra最短路直接求出最短距离即可
import java.io.*;
import java.util.*;
public class Main
{
static int inf = 0x3f3f3f3f;
static int gcd(int a, int b)
{
return b == 0 ? a : gcd(b, a % b);
}
public static void main(String[] args)
{
int n = 2021;
int map[][] = new int[n + 10][n + 10];
for (int i = 1; i <= n; i++)
{
Arrays.fill(map[i], inf);
map[i][i] = 0;
}
for (int i = 1; i <= n; i++)
{
for (int j = i + 1; j <= i + 21 && j <= n; j++)
{
int g = gcd(i, j);
map[i][j] = map[j][i] = Math.min(map[i][j], i * j / g);
}
}
int d[] = new int[n + 10];
Arrays.fill(d, inf);
d[1] = 0;
boolean vis[] = new boolean[n + 10];
for (int i = 1; i <= n; i++)
{
int t = -1;
for (int j = 1; j <= n; j++)
{
if (!vis[j] && (t == -1 || d[t] > d[j]))
t = j;
}
vis[t] = true;
for (int j = 1; j <= n; j++)
d[j] = Math.min(d[j], d[t] + map[t][j]);
}
out.println(d[n]);
out.flush();
out.close();
}
static Scanner sc = new Scanner(System.in);
static PrintWriter out = new PrintWriter(System.out);
}
如果有说错的 或者 不懂的 尽管提 嘻嘻
一起进步!!!