路径 -蓝桥 -java

路径


最大运行时间:1s
最大运行内存: 128M


题目描述:

小蓝学习了最短路径之后特别高兴,他定义了一个特别的图,希望找到图 中的最短路径。

小蓝的图由 2021 个结点组成,依次编号 1 至 2021。

对于两个不同的结点 a, b,如果 a 和 b 的差的绝对值大于 21,则两个结点 之间没有边相连;如果 a 和 b 的差的绝对值小于等于 21,则两个点之间有一条 长度为 a 和 b 的最小公倍数的无向边相连。

例如:结点 1 和结点 23 之间没有边相连;结点 3 和结点 24 之间有一条无 向边,长度为 24;结点 15 和结点 25 之间有一条无向边,长度为 75。

请计算,结点 1 和结点 2021 之间的最短路径长度是多少。

提示:建议使用计算机编程解决问题。


求出结点1 到 结点 2021 之间的最短路


emmmmmmm

先求出 每个点之间的距离
(注: 这是个无向图 所以只需要算 i 与 [i + 1, i + 21] 之间的数 求最小公倍数即可)

然后直接利用dijstra最短路直接求出最短距离即可


import java.io.*;
import java.util.*;

public class Main
{
	static int inf = 0x3f3f3f3f;

	static int gcd(int a, int b)
	{
		return b == 0 ? a : gcd(b, a % b);
	}

	public static void main(String[] args)
	{
		int n = 2021;
		int map[][] = new int[n + 10][n + 10];
		for (int i = 1; i <= n; i++)
		{
			Arrays.fill(map[i], inf);
			map[i][i] = 0;
		}

		for (int i = 1; i <= n; i++)
		{
			for (int j = i + 1; j <= i + 21 && j <= n; j++)
			{
				int g = gcd(i, j);

				map[i][j] = map[j][i] = Math.min(map[i][j], i * j / g);
			}
		}

		int d[] = new int[n + 10];
		Arrays.fill(d, inf);
		d[1] = 0;

		boolean vis[] = new boolean[n + 10];
		for (int i = 1; i <= n; i++)
		{
			int t = -1;
			for (int j = 1; j <= n; j++)
			{
				if (!vis[j] && (t == -1 || d[t] > d[j]))
					t = j;
			}
			vis[t] = true;
			for (int j = 1; j <= n; j++)
				d[j] = Math.min(d[j], d[t] + map[t][j]);
		}
		out.println(d[n]);

		out.flush();
		out.close();
	}

	static Scanner sc = new Scanner(System.in);
	static PrintWriter out = new PrintWriter(System.out);
}

最大公因数

最小公倍数

dijstra
dijstra


如果有说错的 或者 不懂的 尽管提 嘻嘻

一起进步!!!


闪现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谢谢 啊sir

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值