Leetcode刷题 | Day50_图论02_岛屿问题01_dfs两种方法+bfs一种方法

 一、学习任务

  • 99. 岛屿数量_深搜dfs代码随想录
  • 99. 岛屿数量_广搜bfs
  • 100. 岛屿的最大面积
  • 101. 孤岛的总面积

第一类DFS(主函数中处理第一个节点,DFS处理相连节点):

  • 主函数中先将起始节点标记为已访问
  • DFS函数中不处理起始节点,直接判断邻节点是否有效、未访问,然后再处理

第二类DFS(DFS直接处理当前节点):

  • 主函数不处理起始节点
  • DFS函数开头就判断当前节点是否有效,无效则返回,有效则处理当前节点,标记为已访问然后递归处理邻节点

二、具体题目

1.99岛屿数量_深搜dfs99. 岛屿数量

题目描述:

给定一个由 1(陆地)和 0(水)组成的矩阵,你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。

输入描述:

第一行包含两个整数 N, M,表示矩阵的行数和列数。

后续 N 行,每行包含 M 个数字,数字为 1 或者 0。

输出描述:

输出一个整数,表示岛屿的数量。如果不存在岛屿,则输出 0。

版本一调用dfs 的条件判断,放在,版本二的终止条件位置上。(dfs函数内部有差别)

版本一的写法:下一个节点是否能合法已经判断完了,传进dfs函数的就是合法节点。

版本二的写法:不管节点是否合法,上来就dfs,然后在终止条件的地方进行判断,不合法再return。

理论上来讲,版本一的效率更高一些,因为避免了没有意义的递归调用,在调用dfs之前,就做合法性判断。但从写法来说,可能版本二更利于理解一些。

版本一:

  • dfs函数直接处理传入节点连接的四个节点
  • 所以主函数中需要先将这个传入节点的visited数组值设为true,再dfs处理连接的节点
  • dfs函数中,连接的节点被判断为未访问的岛屿后,再对其visited数组值设为true,再dfs处理连接的节点

两个区别:visited再哪里设置;未访问岛屿在哪里判断

#include <iostream>
#include <vector>
using namespace std;

int dir[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}}; // 四个方向
void dfs(const vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) {
    for (int i = 0; i < 4; i++) {
        int nextx = x + dir[i][0];
        int nexty = y + dir[i][1];
        if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 越界了,跳过,换个方向搜索
        if (visited[nextx][nexty] == false && grid[nextx][nexty] == 1) { // 未访问过,同时,是陆地(grid = 1)才继续搜索,不是陆地就直接搜索下一个方向(只能横竖连着才算一个岛)
            visited[nextx][nexty] = true;
            dfs(grid, visited, nextx, nexty);
        }
    }
}

int main() {
    int n, m;
    cin >> n >> m;
    vector<vector<int>> grid(n, vector<int>(m, 0));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> grid[i][j];
        }
    }
    vector<vector<bool>> visited(n, vector<bool>(m, false)); // 访问数组,记录有没有访问过

    int result = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (visited[i][j] == false && grid[i][j] == 1) {
                visited[i][j] = true;
                result++; // 遇到没访问过的陆地,+1
                dfs(grid, visited, i, j); // 将与这个没访问陆地连接的陆地都标记上true,他们属于同一个岛,防止这些点继续被访问,被错误的计算为“未发现的新岛”,影响result计数;(!!保证连在一起的一个岛只被计数一次!!)
            }
        }
    }
    cout << result << endl;
}

版本二: 

  • dfs函数直接处理传入节点
  • 所以主函数中,可以直接用dfs处理该节点
  • dfs函数中,先判断该节点是不是未访问的岛屿;不是就return,是就对其visited数组值设为true,再dfs处理连接的节点

两个区别:visited再哪里设置;未访问岛屿在哪里判断

#include <iostream>
#include <vector>
using namespace std;
int dir[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}}; // 四个方向
void dfs(const vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) {
    if (visited[x][y] == true || grid[x][y] == 0) return; // 终止条件:访问过的节点 或者 遇到海水
    visited[x][y] = true; // 标记访问过
    for (int i = 0; i < 4; i++) {
        int nextx = x + dir[i][0];
        int nexty = y + dir[i][1];
        if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;  // 越界了,直接跳过
        dfs(grid, visited, nextx, nexty);
    }
}

int main() {
    int n, m;
    cin >> n >> m;
    vector<vector<int>> grid(n, vector<int>(m, 0));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> grid[i][j];
        }
    }

    vector<vector<bool>> visited(n, vector<bool>(m, false));

    int result = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (visited[i][j] == false && grid[i][j] == 1) {
                result++; // 遇到没访问过的陆地,+1
                dfs(grid, visited, i, j); // 将与其链接的陆地都标记上 true
            }
        }
    }
    cout << result << endl;
}

2.99岛屿数量_广搜bfs99. 岛屿数量

重点:加入队列就代表走过,立即标记,而不是从队列拿出来的时候再去标记

#include <iostream>
#include <vector>
#include <queue>
using namespace std;

int dir[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}}; // 四个方向
void bfs(const vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) { // 先加入本点,标记本点,再处理连接的四个点
    queue<pair<int, int>> que;
    que.push({x, y});
    visited[x][y] = true; // 只要加入队列,立即标记
    while(!que.empty()) {
        pair<int, int> cur = que.front();
        que.pop(); // 队列前面元素出队列,处理它连接的四个点
        for (int i = 0; i < 4; i++) {
            int nextx = cur.first + dir[i][0];
            int nexty = cur.second + dir[i][1];
            if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 越界了,直接跳过,搜索当前点的下一个方向
            if (visited[nextx][nexty] == false && grid[nextx][nexty] == 1) {
                que.push({nextx, nexty});
                visited[nextx][nexty] = true; // 只要加入队列,立即标记
            }
        }
    }
}
int main() {
    int n, m;
    cin >> n >> m;
    vector<vector<int>> grid(n, vector<int>(m, 0));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> grid[i][j];
        }
    }
    vector<vector<bool>> visited(n, vector<bool>(m, false));

    int result = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (visited[i][j] == false && grid[i][j] == 1) {
                result++; // 遇到没访问过的陆地,+1
                bfs(grid, visited, i, j); // 直接处理这个点,并将与其链接的陆地都标记上 true
            }
        }
    }
    cout << result << endl;
}

3.100岛屿的最大面积100. 岛屿的最大面积

题目描述

给定一个由 1(陆地)和 0(水)组成的矩阵,计算岛屿的最大面积。岛屿面积的计算方式为组成岛屿的陆地的总数。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。

输入描述

第一行包含两个整数 N, M,表示矩阵的行数和列数。后续 N 行,每行包含 M 个数字,数字为 1 或者 0,表示岛屿的单元格。

输出描述

输出一个整数,表示岛屿的最大面积。如果不存在岛屿,则输出 0。

版本一dfs:dfs处理当前节点的相邻节点,即主函数遇到岛屿就计数为1,dfs处理接下来的相邻陆地 

#include <iostream>
#include <vector>
using namespace std;
int count;
int dir[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}}; // 四个方向
void dfs(vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) {
    for (int i = 0; i < 4; i++) {
        int nextx = x + dir[i][0];
        int nexty = y + dir[i][1];
        if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;  // 越界了,直接跳过
        if (visited[nextx][nexty] == false && grid[nextx][nexty] == 1) { // 在这里判断;没有访问过的,同时是陆地的
            visited[nextx][nexty] = true; // 在这里处理
            count++; // 在这里处理;累计传入节点的连接节点的面积
            dfs(grid, visited, nextx, nexty);
        }
    }
}

int main() {
    int n, m;
    cin >> n >> m;
    vector<vector<int>> grid(n, vector<int>(m, 0));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> grid[i][j];
        }
    }
    vector<vector<bool>> visited(n, vector<bool>(m, false));
    int result = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (visited[i][j] == false && grid[i][j] == 1) {
                visited[i][j] = true; // 下面的dfs是处理相连节点的,所以这里要把当前节点visited数组值设置完
                count = 1;  // 因为下面的dfs处理下一个与之相连的节点,所以这里遇到陆地了就先计数,dfs处理接下来的相邻陆地
                dfs(grid, visited, i, j); // 将与其链接的陆地都标记上 true
                result = max(result, count);
            }
        }
    }
    cout << result << endl;

}

版本二dfs:dfs处理当前节点,即主函数遇到岛屿就计数为0,dfs处理接下来的全部陆地

#include <iostream>
#include <vector>
using namespace std;
int count;
int dir[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}}; // 四个方向
void dfs(vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) {
    if (visited[x][y] == true || grid[x][y] == 0) return; // 在这里判断;终止条件:访问过的节点 或者 遇到海水
    visited[x][y] = true; // 在这里处理;因为main里的dfs处理当前节点,所以main中不需要处理当前节点的visited数组值,放在这里处理
    count++; // 在这里处理;因为main里的dfs处理当前节点,所以main中不需要考虑当前节点的面积,放在这里处理
    for (int i = 0; i < 4; i++) {
        int nextx = x + dir[i][0];
        int nexty = y + dir[i][1];
        if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;  // 越界了,直接跳过
        dfs(grid, visited, nextx, nexty);
    }
}

int main() {
    int n, m;
    cin >> n >> m;
    vector<vector<int>> grid(n, vector<int>(m, 0));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> grid[i][j];
        }
    }
    vector<vector<bool>> visited = vector<vector<bool>>(n, vector<bool>(m, false));
    int result = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (visited[i][j] == false && grid[i][j] == 1) {
                count = 0; // 因为dfs处理当前节点,所以遇到陆地计数为0,(现在还不需要考虑它的面积,因为交给后序dfs考虑了)进dfs之后在开始从1计数
                dfs(grid, visited, i, j); // 将与其链接的陆地都标记上 true
                result = max(result, count);
            }
        }
    }
    cout << result << endl;
}

版本三bfs写法:处理当前节点,所以count++放在bfs函数里面的前面

#include <iostream>
#include <vector>
#include <queue>
using namespace std;
int count;
int dir[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}}; // 四个方向
void bfs(vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) {
    queue<pair<int, int>> que;
    que.push({x, y});
    visited[x][y] = true; // 加入队列就意味节点是陆地可到达的点
    count++;
    while(!que.empty()) {
        pair<int, int> cur = que.front();
        que.pop();
        for (int i = 0 ;i < 4; i++) {
            int nextx = cur.first + dir[i][0];
            int nexty = cur.second + dir[i][1];
            if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 越界
            if (visited[nextx][nexty] == false && grid[nextx][nexty] == 1) { // 节点没有被访问过且是陆地
                visited[nextx][nexty] = true;
                count++;
                que.push({nextx, nexty});
            }
        }
    }
}

int main() {
    int n, m;
    cin >> n >> m;
    vector<vector<int>> grid(n, vector<int>(m, 0));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> grid[i][j];
        }
    }
    vector<vector<bool>> visited(n, vector<bool>(m, false));

    int result = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (visited[i][j] == false && grid[i][j] == 1) {
                count = 0;
                bfs(grid, visited, i, j); // 将与其链接的陆地都标记上 true
                result = max(result, count);
            }
        }
    }
    cout << result << endl;
}

4.101孤岛的总面积101. 孤岛的总面积

题目描述

给定一个由 1(陆地)和 0(水)组成的矩阵,岛屿指的是由水平或垂直方向上相邻的陆地单元格组成的区域,且完全被水域单元格包围。孤岛是那些位于矩阵内部、所有单元格都不接触边缘的岛屿。

现在你需要计算所有孤岛的总面积,岛屿面积的计算方式为组成岛屿的陆地的总数。

输入描述

第一行包含两个整数 N, M,表示矩阵的行数和列数。之后 N 行,每行包含 M 个数字,数字为 1 或者 0。

输出描述

输出一个整数,表示所有孤岛的总面积,如果不存在孤岛,则输出 0。

版本一dfs:dfs处理当前节点的连接节点 

#include <iostream>
#include <vector>
using namespace std;
int dir[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}}; // 四个方向
void dfs(vector<vector<int>>& grid, int x, int y) {
    for (int i = 0; i < 4; i++) { // 向四个方向遍历
        int nextx = x + dir[i][0];
        int nexty = y + dir[i][1];
        if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 超过边界,不符合条件,不继续遍历
        if (grid[nextx][nexty] == 1) {
            grid[nextx][nexty] = 0;
            dfs (grid, nextx, nexty);
        }
    }
}

int main() {
    int n, m;
    cin >> n >> m;
    vector<vector<int>> grid(n, vector<int>(m, 0));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> grid[i][j];
        }
    }

    // 从左侧边,和右侧边 向中间遍历
    for (int i = 0; i < n; i++) {
        if (grid[i][0] == 1) {
            grid[i][0] = 0;
            dfs(grid, i, 0);
        }
        if (grid[i][m - 1] == 1) {
            grid[i][m - 1] = 0;
            dfs(grid, i, m - 1);
        }
    }
    // 从上边和下边 向中间遍历
    for (int j = 0; j < m; j++) {
        if (grid[0][j] == 1) {
            grid[0][j] = 0;
            dfs(grid, 0, j);
        }
        if (grid[n - 1][j] == 1) {
            grid[n - 1][j] = 0;
            dfs(grid, n - 1, j);
        }
    }
    int count = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (grid[i][j] == 1) count++;
        }
    }
    cout << count << endl;
}

版本二dfs:dfs直接处理当前节点

#include <iostream>
#include <vector>
using namespace std;
int dir[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}}; // 四个方向
void dfs(vector<vector<int>>& grid, int x, int y) {
    if (grid[x][y] == 0) return;
    grid[x][y] = 0;
    for (int i = 0; i < 4; i++) { // 向四个方向遍历
        int nextx = x + dir[i][0];
        int nexty = y + dir[i][1];
        if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 超过边界,不符合条件,不继续遍历
        dfs (grid, nextx, nexty);
    }
}

int main() {
    int n, m;
    cin >> n >> m;
    vector<vector<int>> grid(n, vector<int>(m, 0));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> grid[i][j];
        }
    }

    // 从左侧边,和右侧边 向中间遍历
    for (int i = 0; i < n; i++) {
        if (grid[i][0] == 1) dfs(grid, i, 0);
        if (grid[i][m - 1] == 1) dfs(grid, i, m - 1);
    }
    // 从上边和下边 向中间遍历
    for (int j = 0; j < m; j++) {
        if (grid[0][j] == 1) dfs(grid, 0, j);
        if (grid[n - 1][j] == 1) dfs(grid, n - 1, j);
    }
    int count = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (grid[i][j] == 1) count++;
        }
    }
    cout << count << endl;
}

bfs:

#include <iostream>
#include <vector>
#include <queue>
using namespace std;
int dir[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}}; // 四个方向
void bfs(vector<vector<int>>& grid, int x, int y) {
    queue<pair<int, int>> que;
    que.push({x, y});
    grid[x][y] = 0; // 只要加入队列,立刻标记
    while(!que.empty()) {
        pair<int ,int> cur = que.front(); 
        que.pop();
        for (int i = 0; i < 4; i++) {
            int nextx = cur.first + dir[i][0];
            int nexty = cur.second + dir[i][1];
            if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;  // 越界了,直接跳过
            if (grid[nextx][nexty] == 1) {
                que.push({nextx, nexty});
                grid[nextx][nexty] = 0; // 只要加入队列立刻标记
            }
        }
    }
}

int main() {
    int n, m;
    cin >> n >> m;
    vector<vector<int>> grid(n, vector<int>(m, 0));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> grid[i][j];
        }
    }
    // 从左侧边,和右侧边 向中间遍历
    for (int i = 0; i < n; i++) {
        if (grid[i][0] == 1) bfs(grid, i, 0);
        if (grid[i][m - 1] == 1) bfs(grid, i, m - 1);
    }
    // 从上边和下边 向中间遍历
    for (int j = 0; j < m; j++) {
        if (grid[0][j] == 1) bfs(grid, 0, j);
        if (grid[n - 1][j] == 1) bfs(grid, n - 1, j);
    }
    int count = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (grid[i][j] == 1) count++;
        }
    }

    cout << count << endl;
}
<think>好的,我现在要处理用户关于“蓝桥杯Python一周速成”的查询。首先,我需要理解用户的需求。用户可能是在短时间内需要准备蓝桥杯Python组的比赛,时间紧迫,所以希望得到高效的学习策略和重点内容。 接下来,我应该考虑蓝桥杯Python组的考察范围。通常这类比赛会涉及基础语法、算法数据结构,以及实际问题的解决能力。由于时间只有一周,用户不可能深入所有细节,因此需要筛选出高频考点和容易快速掌握的内容。 然后,我得规划出一周的学习计划。每天安排不同的主,比如第一天基础语法,第二天数据结构,第三天算法入门,第四天真训练,第五天模拟,第六天查漏补缺,第七天复习调整。每个主需要突出重点,例如基础语法中的循环、条件判断、函数;数据结构中的列表、字典、字符串处理;算法部分如排序、递归、动态规划基础。 还要考虑用户可能的基础情况。如果用户已经有一定Python基础,重点应放在算法和真训练上;如果是零基础,可能需要更紧凑的安排,但一周时间确实紧张。不过用户提到“速成”,所以假设有一定的基础,但需要系统复习和强化。 然后,需要给出具体的学习建议。例如推荐哪些资源,官方库的重要性,时间分配策略,以及调试能力的培养。同时提醒用户避免的误区,比如不要死记硬背代码,或者忽视真。 可能遇到的问题是如何在短时间内高效掌握关键算法。这时候需要推荐常见的算法型,如排序、查找、简单动态规划,并提供典型例,比如斐波那契数列、背包问题等。但要注意复杂度,避免过于复杂的内容。 最后,总结部分需要鼓励用户,强调合理规划和专注的重要性,同时提醒调整心态,保持良好状态参赛。可能还需要提醒用户注意比赛规则和环境,比如蓝桥杯使用的评测系统,编程环境的熟悉等。 检查是否有遗漏点,比如是否需要提到具体的参考资料或在线资源?用户可能希望得到推荐的练习平台,比如蓝桥杯官网、LeetCode简单、牛客网等。是否需要包含这些信息?根据用户的问题,可能不需要太具体的推荐,但给出一般性建议是合适的。 另外,确保回答结构清晰,分点明确,符合用户可见层的指令要求。使用中文,避免专业术语过于晦涩,同时保持逻辑连贯,帮助用户一步步解决问题。 现在需要将这些思考整理成一个结构化的回答,涵盖每日计划、重点内容、学习建议、注意事项等,确保用户能在一周内高效备考。</think>以下是针对蓝桥杯Python组**一周速成计划**的详细指南,结合高频考点和短期突破策略: --- ### **一、核心考点与优先级** 蓝桥杯Python组侧重**算法实现能力**和**实际问题建模**,重点掌握以下内容(按优先级排序): 1. **基础语法**:输入输出(`input()`格式化处理)、列表推导式、字符串操作(切片、`split()`/`join()`) 2. **数据结构**:列表(排序、二维数组操作)、字典(计数、映射)、集合(去重) 3. **算法**: - **必考**:贪心算法(找零、活动选择)、DFS/BFS基础(迷宫问题)、动态规划(一维DP,如爬楼梯) - **高频**:排序(冒泡、快速排序)、递归(阶乘、斐波那契)、数学问题(质数判断、进制转换) 4. **真型**:日期计算、字符串处理、图论基础(最短路径简化版) --- ### **二、7天速成计划表** #### **Day 1-2:语法与数据结构突击** - **上午**: - 输入输出:处理多行输入(如`sys.stdin.read()`),格式化输出(`f-string`对齐) - 列表操作:合并`extend()`、排序`sorted(key=lambda)`、二维列表遍历(矩阵转置) - **下午**: - 字典应用:统计词频(`collections.defaultdict`)、键值反转 - 字符串技巧:`replace()`链式处理、正则表达式简单匹配(如`re.findall(r'\d+',s)`) #### **Day 3-4:算法入门与模板记忆** - **贪心算法**: - 典型:硬币找零(优先大面值)、区间调度(按结束时间排序) - **DFS/BFS**: - 模板代码:迷宫路径计数(使用栈/队列)、岛屿问题 - **动态规划**: - 一维DP:背包问题01背包简化版)、最长递增子序列(`O(n^2)`解法) #### **Day 5-6:真实战与调试技巧** - **策略**: - 近3年初赛真(官网/库),限时90分钟模拟 - 重点型:日期类(闰年判断、星期计算)、数学逻辑(等差数列求和、质因数分解) - **调试技巧**: - 使用`print`定位错误(输出中间变量) - 边界测试:输入为空、极值(如n=0或1e5) #### **Day 7:查漏补缺与策略优化** - **易错点回顾**: - 循环边界错误(如`range(n)` vs `range(1,n+1)`) - 深拷贝/浅拷贝问题(二维列表使用`copy.deepcopy()`) - **时间分配策略**: - 简单30分钟内AC,难先写伪代码保部分分 --- ### **三、推荐资源与工具** 1. **练习平台**:蓝桥杯官方练习系统、洛谷(筛选“普及-”难度) 2. **代码模板**:整理DFS/BFS、快速排序等高频算法模板(手写记忆) 3. **效率工具**:使用Python内置函数(如`itertools.permutations`生成排列) --- ### **四、注意事项** - ❌ 避免死磕复杂算法(如线段树、网络流) - ✅ 考试时优先提交**部分正确**的代码(蓝桥杯按用例给分) - ✅ 注意Python特性:大整数运算无需优化,但递归深度默认限制(可设置`sys.setrecursionlimit`) --- 通过**真驱动学习+模板化训练**,即使时间紧张也能有效提升应试能力。最后一天保持良好作息,调整心态应对比赛!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值