山东大学数字媒体技术机器学习期末

一、名词解释

  1. 测试集

  1. 自助采样法

  1. 机器学习

  1. 最大似然

  1. KNN

二、综合题

  1. 三个工厂生产瓶子,分别占产量的20%,30%,50%,每个工厂的次品率分别为0.7%,0.9%,0.5%(不记得了,随便编的数字),现以为调研人员发现一个有缺陷的瓶子,求该瓶子由工厂1生产的概率。(朴素贝叶斯)

  1. boosting和bagging的基本思想,并比较二者的区别(集成学习)

  1. k-means的算法步骤和优缺点(聚类);简述bp的原理(神经网络)

  1. 写出信息增益的表达式,描述ID3建立决策树有什么优点和问题

三、SVM

  1. 写出svm基本型,并说明其背后原理,可用公式表示

  1. 对于线性不可分的问题,svm如何解决

  1. 关于对偶问题的推导(完全没看推导的本人^_^)

回忆的有些晚了可能不太细节,复习可参考

复习结构:贝叶斯、神经网络、决策树、集成学习、SVM、聚类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值