一、Transformation算子
1.1 产生shuffle的算子:
groupBy:按照指定字段进行分组,生成RDD元素类型是KV键值对。
distinct:去重。
coalesce:增大分区时需设置shuffle为true,如果减少分区,建议使用coalesce,减少分区使用coalesce可以避免shuffle操作,提高线程的利用率
repartition:可增多也可以减少分区,会产生shuffle。
sortBy:按照指定字段进行排序,底层采用RangeParititioner分区器
intersection:交集,会产生shuffle。
subtract:差集,会产生shuffle,RDD1.subtract(RDD2) 的结果就是取出RDD1中除开交集的元素。
partitionBy / groupByKey / reduceByKey / foldByKey / CombineByKey / aggregateByKey / sortByKey / mapValues 均会产生shuffle。
join / leftOuterJoin / rightOuterJoin / fullOuterJoin / cogroup 均会产生shuffle。
cogroup:每个RDD进行groupByKey后再进行fullouterJoin。
1.2 不产生shuffle的算子:
map:针对RDD里面每个元素进行一对一映射。
mapPartitions:针对RDD里面每个分区进行操作。
mapPartitionsWithIndex:针对RDD里面每个分区进行操作,函数里面传入有两个部分,一个是index分区号,一个是分区迭代器。
flatMap:(map + flatten),相当于sql中的UDTF函数。
union:并集,不会产生shuffle [两个集合所有元素合并,不会去重]
zip:拉链,不会产生shuffle [两个RDD拉链,必须保证分区数和元素个数一致]
二、Action算子
collect:
(1)Collect算子是搜集RDD每个分区的数据,最终将数据以数组的形式封装传给Driver;
(2)如果RDD数据量比较大,Driver的内存默认只有1G,此时会出现内存溢出,工作一般会将Driver内存设置为3~5G;
(3)可以通过bin/spark-submit --driver-memory 5G 来设置。
take:获取RDD前N哥元素组成的数组;take先启动一个job从0号分区找,如果0号分区数据不够N个元素,在启动一个job,在从其他分区找剩余元素。
takeOrdered;返回RDD排序后前N个元素组成的数组。
first:获取RDD中的第一个元素;first首先会启动一个job从0号分区获取第一个元素,0号分区如果没有数据,会再启动一个job从其他分区获取第一个元素。
count:统计RDD中的元素个数。
countByKey:统计每个key的个数。
save:将数据保存到文件中;saveAsTextFile(path):保存成Text文件。
foreach:针对每个元素遍历。
foreachPartititon:针对每个分区遍历;使用场景为一般用于将数据保存到mysql/ hbase/redis地方,可以减少资源链接创建与销毁的次数。