下面思路参考:[线性dp] 编辑距离(模板题+编辑距离模型)_Ypuyu的博客-CSDN博客
#include<iostream>
#include<bits/stdc++.h>
#include<cstdio>
using namespace std;
int dp[105][105]; //dp[i][j]意思是a序列枚举到i,b序列枚举到j的最长上升子序列
int main(){
string a,b; //将b字符串变成a字符串,这里水变谁关系两层到for循环谁内谁外问题
cin>>a>>b;
int len1 = a.size();
int len2 = b.size();
//边界处理,dp[i][0] = i——添加i个字符,dp[0][j]= j ——删除j个字符
for(int i = 1; i <= len1; ++i){
dp[i][0] = i;
}
for(int i = 1; i <= len2; ++i){
dp[0][i] = i;
}
//为了不出现dp[-1]的情况,下标从1开始,即后一个状态记录当前状态的情况,即dp[1][1]记录dp[0][0]状态
for(int i = 1;i <= len1; ++i){
for(int j = 1; j <= len2; ++j){
if(a[i-1] == b[j-1]){
dp[i][j] = dp[i-1][j-1]; //默认dp[0][0] = 0,无任何操作
}
else{
dp[i][j] = min(min(dp[i-1][j],dp[i][j-1]),dp[i-1][j-1])+1; //找到删除、添加、修改操作次数最小的一个
}
}
}
cout<<dp[len1][len2]<<endl;
return 0;
}