#include<iostream>
#include<cstring>
using namespace std;
挨拉托色尼筛法
就是从头到尾,如果是i的倍数,就全删除掉
从i的i倍开始计算
int main(void)
{
int i,j;//输出是i,j时,不可以定义成局部变量,不然就找不到了
bool a[101];
memset(a,1,sizeof(a));//数组初始化
for(int i=2;i<10;i++){// 因为10的10倍不时121,大于100,所以截止到10即可
if(a[i]==1){
for(j = i;j*i<=100;j++){//从数的自己倍开始,之积小于100为范围
a[i*j]=0;//删除的话就用把它关系变为0来记
}
}
}
for(i=2;i<100;i++){
if(a[i]==1){//此时没有被删除,关系还是1的数,就是要找的素数
cout<<i<<" ";//输出的时他的下标,即素数。不是输出的数组元素,此时的数组已经是关系矩阵了
}
}
}
有重复筛的可能性
欧拉筛法
筛1~45的
int main(){
bool a[46];
int s[30];//放素数的
int n=45,i,j,k=0;
// memset(a,0,sizeof(a));
for(i=2;i<=n;i++){
if(a[i]==0){//数组默认值为0,0标记的为素数
s[++k]=i;//将它的下标也就是质数放进数组k中储存
}
for(j=1;j<=k;j++){//枚举第j个质数,筛掉质数倍的合数
if(s[j]*i>n) break;//超出边界不统计
a[s[j]*i]=1;//是合数用1给它标记了
if(i%s[j]==0) break;//当乘数是被乘数的倍数时,结束筛
}
}
for(i=1;i<=k;i++){//直接把质数数组输出即可,不用像上面那种筛法,用0判断
cout<<s[i]<<" ";
}
// return 0;
}