接上文
作者首先肯定了通道注意力机制(在
S
E
N
e
t
SENet
SENet当中提出来的)的作用,对于没有参数的
S
E
−
V
A
R
1
SE-VAR1
SE−VAR1模型,其效果仍然超过没有通道注意力机制的网络,可见注意力机制是有用的。
但是作者不认为降维是有效的,作者认为这会让通道之间的关系变得不直接。
所以作者直接使用没有经过降维的模块与
S
E
N
e
t
SENet
SENet模块做对比,发现比原始降维的通道注意力机制效果好…
这两个模块:
S
E
−
V
A
R
2
SE-VAR2
SE−VAR2和
S
E
−
V
A
R
3
SE-VAR3
SE−VAR3长这样:
从
S
E
−
V
A
R
2
SE-VAR2
SE−VAR2可以看出即使是独立的学习通道,效果也比降维要好,更多的是需要在不降维的情况下学习通道之间的直接关系,而不是考虑非线性关系。
对比
S
E
−
V
A
R
2
SE-VAR2
SE−VAR2和
S
E
−
V
A
R
3
SE-VAR3
SE−VAR3来看,可以看出
S
E
−
V
A
R
3
SE-VAR3
SE−VAR3要强于
S
E
−
V
A
R
2
SE-VAR2
SE−VAR2,这个是因为
S
E
−
V
A
R
3
SE-VAR3
SE−VAR3考虑了通道之间的交互关系,而不是独立的考虑各个通道。但是我们会发现
S
E
−
V
A
R
3
SE-VAR3
SE−VAR3的参数量较大,在维度比较高的时候,这个矩阵是很大的,因此在
S
E
−
V
A
R
2
SE-VAR2
SE−VAR2和
S
E
−
V
A
R
3
SE-VAR3
SE−VAR3之间的折中是把矩阵做成以下这种对角阵的形式:
这个块叫做
S
E
−
G
C
SE-GC
SE−GC,从表格我们可以看出,这个块相对比
S
E
−
V
A
R
2
SE-VAR2
SE−VAR2来说,并没有显著的性能提升(这个
S
E
−
G
C
SE-GC
SE−GC的实现方式是分组卷积),作者认为这可能是因为这个模块是独立地学习组与组之间的关系,更应该让组与组之间有交互。
因此作者继续对块进行了改进,也就是把矩阵改成了以下这种形式:
这个实际上就是一维卷积,而这个矩阵被称为
E
C
A
−
N
S
ECA-NS
ECA−NS
这里面的
k
k
k与通道
C
C
C有一个非线性的映射关系,也就是:
最后作者认为
k
k
k取值为
3
3
3的话,卷积块的效果应该会更好。