ECA模块的提出过程

文章探讨了通道注意力机制在SENet中的作用,发现降维不是有效策略,提出SE-VAR系列模型,尤其是SE-VAR3考虑通道交互优于其他模型。进一步研究中,作者引入ECA-NS,通过一维卷积而非矩阵运算改善性能,强调k值选择对效果的影响。
摘要由CSDN通过智能技术生成

接上文
作者首先肯定了通道注意力机制(在 S E N e t SENet SENet当中提出来的)的作用,对于没有参数的 S E − V A R 1 SE-VAR1 SEVAR1模型,其效果仍然超过没有通道注意力机制的网络,可见注意力机制是有用的。
在这里插入图片描述
但是作者不认为降维是有效的,作者认为这会让通道之间的关系变得不直接。
是
所以作者直接使用没有经过降维的模块与 S E N e t SENet SENet模块做对比,发现比原始降维的通道注意力机制效果好…
在这里插入图片描述
这两个模块: S E − V A R 2 SE-VAR2 SEVAR2 S E − V A R 3 SE-VAR3 SEVAR3长这样:
在这里插入图片描述
S E − V A R 2 SE-VAR2 SEVAR2可以看出即使是独立的学习通道,效果也比降维要好,更多的是需要在不降维的情况下学习通道之间的直接关系,而不是考虑非线性关系。
对比 S E − V A R 2 SE-VAR2 SEVAR2 S E − V A R 3 SE-VAR3 SEVAR3来看,可以看出 S E − V A R 3 SE-VAR3 SEVAR3要强于 S E − V A R 2 SE-VAR2 SEVAR2,这个是因为 S E − V A R 3 SE-VAR3 SEVAR3考虑了通道之间的交互关系,而不是独立的考虑各个通道。但是我们会发现 S E − V A R 3 SE-VAR3 SEVAR3的参数量较大,在维度比较高的时候,这个矩阵是很大的,因此在 S E − V A R 2 SE-VAR2 SEVAR2 S E − V A R 3 SE-VAR3 SEVAR3之间的折中是把矩阵做成以下这种对角阵的形式:
在这里插入图片描述
这个块叫做 S E − G C SE-GC SEGC,从表格我们可以看出,这个块相对比 S E − V A R 2 SE-VAR2 SEVAR2来说,并没有显著的性能提升(这个 S E − G C SE-GC SEGC的实现方式是分组卷积),作者认为这可能是因为这个模块是独立地学习组与组之间的关系,更应该让组与组之间有交互。
在这里插入图片描述

因此作者继续对块进行了改进,也就是把矩阵改成了以下这种形式:
在这里插入图片描述
这个实际上就是一维卷积,而这个矩阵被称为 E C A − N S ECA-NS ECANS
在这里插入图片描述
这里面的 k k k与通道 C C C有一个非线性的映射关系,也就是:
在这里插入图片描述
最后作者认为 k k k取值为 3 3 3的话,卷积块的效果应该会更好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值