自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(176)
  • 收藏
  • 关注

原创 分布式排行榜系统设计方案

高性能:基于Redis ZSet跳表结构,查询Top N复杂度O(log N + N)高可用:Redis集群 + 主从复制 + 本地缓存多级容错高并发:批量更新 + 异步处理 + 限流保护可扩展:水平分片 + 一致性哈希 + 动态扩容实时性:毫秒级更新延迟 + 近实时查询。

2025-09-29 21:31:58 673

原创 分布式任务事务框架设计与实现方案

/ 任务唯一标识// 任务名称// 任务分组// 任务描述// 定时表达式// 任务类型(SIMPLE, CRON, DEPENDENT)// 任务优先级// 最大重试次数// 重试间隔(毫秒)// 任务参数// 依赖任务列表// 执行器类名// 是否有状态// 超时时间(秒)// 失败策略// 事务唯一标识// 事务名称// 事务类型(XA, TCC, SAGA)// 隔离级别// 超时时间(秒)// 参与者列表// 传播行为任务调度系统。

2025-09-29 20:32:54 812

原创 分布式短链接系统设计方案

应用层数据库: MySQL分片集群 + MongoDB缓存: Redis集群 + 本地缓存消息队列: RocketMQ监控部署通过合理的架构设计、算法选择和技术方案,该系统能够满足大规模分布式短链接服务的需求,并具备良好的扩展性和维护性。

2025-09-29 20:29:09 650

原创 分布式秒杀系统设计方案

核心组件说明1. 接入层CDN: 静态资源缓存,减少服务器压力Nginx: 负载均衡,请求分发,限流API Gateway: 统一入口,认证,限流,熔断2. 应用层秒杀服务: 核心业务逻辑处理用户服务: 用户认证和信息管理商品服务: 商品信息管理订单服务: 订单处理和管理支付服务: 支付处理3. 中间件层Redis集群: 缓存热点数据,分布式锁RocketMQ: 异步消息处理,削峰填谷Elasticsearch: 日志分析和搜索4. 数据层MySQL主从集群:

2025-09-29 20:28:20 954

原创 分布式计数器系统完整解决方案

多级缓存架构:本地缓存 + Redis集群 + 数据库,实现性能与可靠性平衡智能分片策略:根据热度动态调整分片数量,解决热点key问题异步数据同步:通过消息队列实现最终一致性,提升写入性能完善的限流防刷:多维度限流 + 用户行为校验,防止恶意攻击强大的容灾能力:自动故障检测、优雅降级、数据恢复机制系统可支持百万级并发,响应时间控制在10ms以内,可用性达到99.99%以上,完全满足大型互联网产品的需求。关键创新点基于访问频率的智能分片算法多级缓存的优雅降级机制操作日志的数据恢复方案。

2025-09-29 20:27:14 1004

原创 分布式任务事务框架设计与实现方案

/ 任务唯一标识// 任务名称// 任务分组// 任务描述// 定时表达式// 任务类型(SIMPLE, CRON, DEPENDENT)// 任务优先级// 最大重试次数// 重试间隔(毫秒)// 任务参数// 依赖任务列表// 执行器类名// 是否有状态// 超时时间(秒)// 失败策略// 事务唯一标识// 事务名称// 事务类型(XA, TCC, SAGA)// 隔离级别// 超时时间(秒)// 参与者列表// 传播行为任务调度系统。

2025-09-29 18:38:33 1094

原创 潮汐流量处理系统设计方案

2.2 核心组件智能负载均衡器:基于实时指标的流量分发自动扩缩容系统:基于多维度指标的弹性伸缩多层缓存体系:CDN + Redis + 本地缓存流量控制系统:限流、熔断、降级监控告警系统:实时监控和预警3. 技术选型与实现3.1 负载均衡器配置负载均衡器是潮汐流量处理系统的第一道防线,负责将外部请求智能分发到后端服务实例。在潮汐流量场景下,负载均衡器需要具备以下核心能力:设计要点:以下配置展示了如何使用Nginx实现智能负载均衡,包括动态权重、健康检查、限流和缓存等关键特性:HAPro

2025-09-29 18:37:43 997

原创 分布式任务调度系统中的线程池使用详解

线程池的核心参数直接影响系统的性能、资源利用率和稳定性。以下是关键参数的设置原则和代码实现:1.2 不同场景下的参数调优策略不同的业务场景需要不同的线程池配置策略:1.3 参数设置对系统性能的影响线程池参数设置对系统性能有显著影响,以下是一个性能测试和监控类,用于评估不同参数配置的性能表现:2. 线程池如何动态变化2.1 如何实现线程池的动态扩缩容在分布式系统中,工作负载可能会随时间变化,因此需要动态调整线程池参数。以下是一个动态线程池的实现:2.2 基于负载的自适应调整机制以下是一个基于

2025-09-29 15:34:11 382 1

原创 高并发场景下分布式任务调度系统的核心代码与逻辑

任务提交网关:接收客户端提交的任务请求任务调度中心:负责任务的分发和调度决策执行节点集群:实际执行任务的工作节点分布式存储:存储任务元数据和状态信息监控与告警系统:监控系统运行状态和异常情况/*** 系统架构示意图* | |* | |*/

2025-09-29 15:33:25 1266

原创 分布式任务调度系统设计方案

GridJob 是一个高性能、高可靠、可扩展的分布式任务调度系统,旨在解决大规模分布式环境下的任务调度问题。系统支持海量任务的调度、执行和监控,具备强大的容错能力和扩展性。GridJob 采用分层架构设计,主要包含以下几个层次:2. 核心组件设计2.1 调度中心 (Scheduler)调度中心是系统的核心组件,负责任务的调度、分发和状态管理。调度中心内部采用模块化设计,主要包含以下模块:调度中心采用主从架构,保证高可用:2.2 执行节点 (Executor)执行节点负责实际执行调度中心分发的任务,

2025-09-29 15:32:34 925

原创 线程池性能分析与优化完全指南

线程池是一种基于对象池模式的并发处理机制,通过预创建和复用线程来减少线程创建销毁的开销。其核心工作流程如下:生命周期管理线程池具有完整的生命周期管理机制:状态详解:参数详解核心参数数学模型参数影响公式corePoolSize (核心线程数)作用: 线程池维护的最小线程数量特点: 即使空闲也不会被回收(除非设置allowCoreThreadTimeOut)计算公式:CPU密集型:IO密集型:maximumPoolSize (最大线程数)作用: 线程池允许创建的最大线

2025-09-29 15:30:37 811

原创 无锁化编程(Lock-Free Programming)分析

无锁化编程(Lock-Free Programming)是一种并发编程技术,它不使用传统的互斥锁(mutex)、信号量(semaphore)等阻塞同步原语来保证线程安全,而是通过原子操作、内存屏障和巧妙的算法设计来实现线程间的同步和协调。非阻塞性:线程不会因为等待锁而被阻塞系统级进展保证:至少有一个线程能够在有限时间内完成操作避免死锁:由于不使用锁,天然避免了死锁问题高并发性能:在高竞争环境下通常表现更好高性能:避免了锁的开销,在高并发场景下性能优异可扩展性:随着线程数增加,性能下降较小。

2025-09-17 17:37:18 924

原创 大Key与热Key详解:概念、危害与解决方案

大Key是指在Redis等缓存系统中,单个key对应的value占用内存空间过大的情况。String类型:value大于10KBHash、List、Set、ZSet类型:元素个数超过5000个任何类型:序列化后大小超过1MB占用大量内存空间读写操作耗时较长网络传输开销大容易成为系统瓶颈"""监控大Key"""try:})

2025-09-17 16:33:41 659

原创 SQL CTE (Common Table Expression) 详解

CTE(Common Table Expression,公用表表达式)是SQL中的"命名临时结果集",通过WITH关键字定义,仅在当前查询中生效。核心作用:简化复杂查询:将复杂逻辑分解为多个步骤提高可读性:使SQL语句更易理解和维护复用子查询结果:避免重复计算相同的子查询代码可读性:将复杂查询分解为逻辑清晰的步骤代码复用:在同一查询中多次引用相同的子查询结果递归处理:优雅处理层级和树形结构数据性能优化:通过物化避免重复计算使用描述性的CTE名称按逻辑顺序组织多个CTE。

2025-09-17 14:06:51 1342

原创 可达性分析: 什么东西可以被当作根

根节点来源具体对象/引用核心原因虚拟机栈当前方法栈帧本地变量表中的引用程序正在使用的对象,不可回收方法区-静态变量类的静态引用类型变量生命周期与类一致,全局共享方法区-常量运行时常量池中的引用(如String常量)常量不可修改,可能被多处引用本地方法栈Native方法的JNI引用(如jobject)外部Native代码依赖的Java对象活跃线程正在运行/阻塞的Thread实例线程未终止,关联资源需保留JVM内部引用GC自身引用、类加载器、系统类等。

2025-09-11 17:35:17 982

原创 Java 线上问题排查:从基础到高级的全面指南

问题复盘组织团队对问题进行全面复盘,分析问题发生的根本原因、处理过程中的优点和不足。示例:复盘支付接口性能问题,发现缺少索引是由于开发阶段未进行充分的性能测试。记录与分享将问题分析过程、修复方案和经验教训整理成文档,分享给团队成员。示例:编写《支付接口性能问题处理报告》,详细说明问题原因和解决方法。制定预防措施根据复盘结果,制定针对性的预防措施,防止类似问题再次发生。示例:加强开发阶段的性能测试,建立数据库索引审核机制,完善慢查询监控和报警。持续改进。

2025-09-11 17:30:08 681

原创 AI Coding — 基于RAG的Token窗口优化方案

本文档详细阐述了一套基于检索增强生成(RAG)技术的Token窗口优化方案,旨在解决大型代码库在AI辅助编程过程中面临的上下文信息超出模型Token限制的核心问题。通过智能的代码分块策略、高效的检索算法和动态的上下文管理机制,该方案能够显著提升代码理解的准确性和编程任务的执行效率。在现代软件开发中,代码库规模日益庞大,动辄包含数千个文件和数百万行代码。传统的AI编程助手在处理此类大型项目时面临着严峻挑战:本方案通过以下核心技术创新解决上述问题:本方案采用分层架构设计,将复杂的Token窗口优化问题分解为多个

2025-09-08 22:44:04 1139

原创 Aider AI Coding 项目 Token 窗口优化分析

Aider 项目实现了一套复杂而高效的 Token 窗口优化系统,主要通过智能的上下文裁剪算法、基于代码相关性的优先级排序以及动态调整机制来解决大型项目上下文信息容易超出模型 token 限制的问题。

2025-09-08 21:46:53 799

原创 Aider AI Coding 多策略编码系统深度分析报告

Aider的多策略编码系统是一个设计精良、功能强大的软件架构典范。它成功地平衡了灵活性、性能和易用性,通过巧妙的设计模式应用和智能的选择机制,为用户提供了高度定制化的编码体验。

2025-09-08 21:18:09 598

原创 Aider AI Coding项目 流式处理架构深度分析

Aider项目采用了先进的流式处理架构来实现与大语言模型的实时交互。这种架构通过Python的生成器机制和yield关键字,实现了高效的流式数据处理,为用户提供了实时反馈体验。2. 流式处理核心实现2.1 send_message方法详细分析在中的方法是流式处理的入口点:关键技术点:方法负责构建结构化的消息上下文:2.3 ChatChunks消息分块管理类提供了高效的消息组织和缓存机制:设计优势:在中实现了与各种LLM提供商的流式通信:3.2 流式数据处理4. 消息验证和角色管理4.1

2025-09-08 20:37:53 961

原创 Aider AI Coding 智能上下文管理深度分析

Aider 是一个基于 AI 的代码编辑工具,其核心优势在于智能的上下文管理系统。本分析深入研究了 Aider 如何通过三个关键技术实现高效的上下文管理:文件位置: RepoMap 是 Aider 智能文件选择的核心组件,它通过分析代码依赖关系来构建仓库的语义映射。智能排序算法1.2 依赖关系分析符号定义和引用追踪1.3 上下文编码器 (ContextCoder)文件位置: ContextCoder 专门用于识别需要编辑的文件,它通过反射机制不断优化文件选择。2. 使用 tree-sitte

2025-09-08 20:22:17 1338

原创 Aider AI Coding IO 交互系统深度分析

Aider 的 IO 交互系统是一个精心设计的多层架构,专门为 AI 辅助编程场景优化。该系统巧妙地整合了命令行交互、文件操作和流式输出三大核心功能,为用户提供了流畅、安全且高效的编程体验。Aider 采用了分层解耦的架构设计:1. 用户界面系统1.1 命令行交互核心 (IO.py)设计理念IO.py 是整个交互系统的核心,采用了适配器模式和策略模式的组合设计:核心特性1. 智能输入处理2. 渐进式输出系统3. 确认机制1.2 进度显示系统 (waiting.py)设计亮点1. 线程安

2025-09-08 20:07:59 1012

原创 Aider AI Coding 项目 LLM 模型管理 深度分析

高度抽象:通过 Model 类提供统一接口灵活配置:支持多种配置方式和动态加载智能优化:针对不同模型和场景的优化策略强大扩展性:支持新模型和提供商的轻松集成成本意识:通过多层模型架构优化使用成本这个系统为 Aider 提供了强大而灵活的 AI 模型支持,使其能够适应快速发展的 AI 生态系统。# Aider LLM 模型管理系统深度分析Aider 的 LLM 模型管理系统是一个高度模块化和可扩展的架构,负责管理多种 AI 模型的配置、认证、调用和优化。该系统通过。

2025-09-08 19:55:42 1089

原创 Aider AI Coding 项目 RepoMap 模块深度分析

Aider 的 RepoMap 系统是一个智能的代码仓库映射和上下文管理系统,其核心目标是为 AI 编程助手提供最相关的代码上下文。系统采用多层架构设计:核心算法思路1. 符号重要性评分算法RepoMap 使用基于图论的算法来计算符号的重要性:2. 动态文件选择算法系统使用贪心算法在令牌限制下选择最相关的文件:关键代码片段和解释1. RepoMap 类的核心初始化2. 符号提取和依赖分析3. Tree-sitter 语法解析4. 依赖关系图构建工作流程图解技术特点和优势1

2025-09-08 19:50:45 1093

原创 Aider AI Coding 项目 Coders 模块解析

分层抽象BaseCoder提供通用框架,专门化编码器实现特定策略容错机制:多层匹配策略和智能推断提高成功率用户体验:详细的错误反馈和实时预览功能扩展性:清晰的接口设计便于添加新的编码器类型这种架构既保证了代码修改的准确性,又提供了良好的用户体验,是 AI 辅助编程工具的优秀实践。

2025-09-08 19:50:05 826

原创 AIcoding- Aider项目架构概览学习笔记

Aider采用经典的分层架构模式,将系统划分为5个清晰的层级,每个层级都有明确的职责和边界:层级划分与调用关系:各层级核心文件映射:数据流向:1.2 策略模式应用Aider在编码器系统中大量运用了策略模式,实现了"多种编辑策略"的灵活切换:策略模式核心实现:策略切换机制:根据不同的模型能力、文件类型和编辑需求,系统能够动态选择最适合的编码策略,确保编辑效果的最优化。核心功能: 系统启动、参数解析、环境初始化对应文件/模块:关键作用:核心功能: 用户界面、命令处理、输入输出管理对应文件/模块:关键作用:

2025-09-04 17:09:49 860

原创 Qwen-agent 核心功能分析学习

统一交互接口:所有代理通过run方法接收消息列表,返回流式响应,简化集成流程。灵活的工具集成:通过配置工具,支持内置工具(如)和自定义工具注册。多模态与RAG支持Assistant等代理原生支持文档解析、图像理解,结合检索增强生成提升回答准确性。多代理协作:从简单群聊到智能路由,支持复杂场景下的代理分工与协同。代理类型核心能力典型场景依赖模块AssistantRAG + 工具调用 + 角色扮演通用问答、文档分析记忆模块(memoryDocQAAgent长文档精准问答论文解读、合同分析。

2025-09-04 16:46:15 949

原创 qwen-code 功能分析报告

通过对 qwen-code 项目 core 包中多个工具文件的分析,我们了解了辅助编程功能的具体实现方式。

2025-09-04 16:07:06 848

原创 LangChain开源LLM集成:从本地部署到自定义生成的低成本落地方案

LangChain的开源LLM适配机制本质上是一个标准化接口层,它解决了本地部署模型与LangChain生态系统之间的连接问题。这个适配层充当了"翻译器"的角色,将各种开源LLM的原生API转换为LangChain统一的接口规范。核心价值定位:成本控制:避免闭源API的高昂调用费用数据安全:确保敏感数据不出境,满足合规要求自主可控:摆脱对第三方服务的依赖定制化能力:支持模型微调和个性化部署多模型支持能力:Ollama集成:支持Llama、Mistral、CodeLlama等主流开源模型。

2025-09-01 09:54:37 971

原创 LangChain Callbacks:LLM应用的执行监控与可观测性框架

LangChain Callbacks系统本质上是一个**“执行过程监控与干预的钩子机制”**,它通过事件驱动的方式捕获LLM应用各环节的运行状态,成为生产环境"可观测性"的关键支撑。核心作用机制:无监控的LLM应用缺陷对比:复杂系统中的价值体现:在企业级RAG系统中,一次查询可能涉及:没有Callbacks,这个过程完全是黑盒;有了Callbacks,每个环节都可以被监控、记录和优化。LLM应用启动执行环节1: 文档检索触发 on_retriever_startCallbacks捕获并处理输出监控数据执行

2025-09-01 09:53:48 324

原创 LangChain检索增强:从冗余过滤到精准排序的检索质量提升机制

是LangChain中的"检索结果精炼工具",它通过包装基础检索器并应用文档压缩策略,实现对检索结果的智能过滤和压缩。重排序机制则作为"相关性优化机制",通过更精细的语义匹配算法重新调整文档的相关性排序。LangChain的检索增强机制通过ContextualCompressionRetriever和重排序机制的巧妙结合,实现了从"冗余过滤到精准排序"的检索质量全面提升。解决RAG核心痛点:有效应对冗余信息干扰、排序不准确、Token消耗过大等问题模块化设计优势。

2025-09-01 09:53:27 1375

原创 LangChain文本拆分:从字符递归到语义感知的Chunk优化机制

是LangChain中的"通用字符级拆分工具",通过递归尝试不同分隔符来实现智能文本分割。它不是简单的字符切割,而是一个语义感知的分层拆分系统。语义拆分策略是"智能语义保留方案",通过保持文本的逻辑结构完整性,避免在句子、段落或代码块中间进行生硬切割。分层递归拆分:按优先级尝试不同分隔符(段落→句子→词语→字符)语义边界保护:避免在语义单元中间切割Token精确控制:通过length_function适配不同模型的Token计算重叠策略优化:通过chunk_overlap保持上下文连续性。

2025-09-01 09:52:52 507

原创 LangChain对话记忆:从记忆压缩到智能检索的上下文管理机制

如何在长对话中维持上下文连续性,避免"健忘症"和"信息过载"。传统困境:无记忆对话系统的缺陷# 无记忆系统:每次对话都是独立的,无法维持上下文# 每次调用都是全新开始,丢失历史信息# 问题演示chat("我叫张三") # "你好张三!chat("我的名字是什么?") # "我不知道你的名字" ❌对话记忆的价值:智能上下文管理# 记忆系统:维持对话连续性和上下文感知conversation.predict(input="我叫张三,是一名软件工程师")

2025-09-01 09:52:15 510

原创 LangChain Agent系统:从智能决策到工具调用的自主能力框架

LangChain Agent系统解决了传统AI应用中的一个关键痛点:如何让大语言模型具备自主决策和工具调用能力。传统困境:手动调用工具链Agent系统的价值:智能自主决策1.2 核心组件定位AgentExecutor:Agent决策与工具执行的调度中枢职责:管理Agent的完整执行生命周期核心功能:维护"思考-行动-观察"的循环机制处理工具调用的安全封装管理中间步骤和状态提供错误处理和恢复机制ChatOpenAIFunctionsAgent/ToolCallingAgent:

2025-09-01 09:51:53 812

原创 LangChain RAG核心链:从基础检索到对话式问答的全流程封装

和:基础RAG链,实现"用户查询→文档检索→答案生成"的标准闭环:对话式RAG链,在基础RAG基础上融入对话历史管理,支持多轮上下文感知问答这两个核心链的本质是将RAG技术从"研究原型"转化为"工程模板",让开发者无需从零构建复杂的检索-生成协同逻辑。LangChain的RAG核心链(RetrievalQA和ConversationalRetrievalChain)通过系统性的封装和优化,将复杂的检索增强生成技术转化为开箱即用的工程组件。

2025-09-01 09:51:31 792

原创 LangChain基础链:LLMChain与SequentialChain的流程编排逻辑深度解析

LLMChain作为LangChain框架中的最小功能单元,本质上是"PromptTemplate + LLM + OutputParser"的标准化封装。如何将结构化的提示词模板与大语言模型进行标准化连接。则是多链串行执行的编排工具,实现了复杂AI工作流的分步骤处理和数据流转。它将多个独立的处理单元按照依赖关系串联,形成完整的处理管道。LangChain基础链(LLMChain与SequentialChain)作为AI应用开发的核心基础设施。

2025-09-01 09:50:59 883

原创 LangChain VectorStores核心:多向量数据库统一交互层与RAG存储中枢

是LangChain框架中向量数据库的统一抽象接口,作为RAG(检索增强生成)系统的核心存储中枢,为不同向量数据库提供一致的操作接口。核心价值统一抽象:为50+种向量数据库提供一致的API接口RAG中枢:作为检索增强生成系统的核心存储层开发简化:屏蔽底层数据库差异,降低开发复杂度生态协同:与Embeddings、Retrievers无缝集成文档管理delete()相似性检索多样化检索(MMR算法)检索器集成转换为Retriever对象异步支持:所有操作的异步版本元数据过滤。

2025-09-01 09:50:27 1595

原创 LangChain Embeddings核心:BaseEmbeddings接口设计与多场景落地

BaseEmbeddings作为LangChain中"文本→向量"转换的统一抽象接口,其核心作用是提供标准化的嵌入模型调用规范,成为RAG流程中的"语义桥梁"。

2025-09-01 09:49:15 757

原创 LangChain文档加载:多源异构数据的标准化接入机制

DocumentLoader是LangChain框架中的核心组件,作为"异构数据源统一接入接口",它解决了RAG(Retrieval-Augmented Generation)系统中最基础也是最关键的问题:如何将来自不同格式、不同来源的文档数据转换为标准化的Document对象。在企业级应用中,数据来源极其多样化:DocumentLoader充当了"数据入口"的角色,确保无论数据来源如何复杂,最终都能转换为统一的Document对象,为后续的文本分割、向量化、检索等步骤提供标准化输入。在没有Document

2025-09-01 03:38:05 733

原创 LangChain Prompt管理核心:PromptTemplate与ChatPromptTemplate全解析

共同的处理流程"""统一的调用入口"""# 1. 验证输入参数# 2. 格式化模板核心步骤解析模板定义:使用特定语法定义变量占位符参数验证:检查必需参数是否提供,类型是否匹配变量合并:合并部分变量(partial_variables)和用户输入格式化输出:根据模板类型生成相应的输出格式和模板化管理:将Prompt从硬编码转向模板化,提高可维护性参数验证:自动验证输入参数,减少运行时错误类型适配:针对不同LLM类型提供专门优化组合能力:支持复杂的模板组合和链式处理生态集成。

2025-08-31 16:26:11 1252

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除