中国科幻小说家刘慈欣在他被提名星云奖的名著《三体》中给出了被他称为“黑暗森林法则”的基于社会学的另一种解释:“宇宙就是一座黑暗森林,每个文明都是带枪的猎人,像幽灵一般潜行于林间,轻轻地拨开挡路的树枝,竭力不让脚步发出一点儿声音,连呼吸都必须小心翼翼:他必须小心,因为林中到处都有与他一样潜行的猎人,如果他发现了别的生命,能做的只有一件事:开枪消灭之。”这个解释虽然显得很残酷,但是确实可以有效地解释费米悖论。当然,即使是作者本人也不认为这个解释无懈可击,所以原著中存在着几种改进的理论。
本文沿用了刘慈欣先生在其著作中给出的两条公理。
**公理1(生存公理):**生存是文明的第一需要,且面对其他文明的威胁心存警惕。
**公理2(资源公理):**文明不断增长和扩张,但宇宙中的物质总量保持不变。
下面从概率和动态的角度分别建立两个数学模型,从不同的角度来观察这个“黑暗森林”。
1.博弈与均衡
假设当前在可观察的范围内相对于地球有且仅有一个地外文明,称地球文明为文明A,该地外文明为文明B,并设 x x x和 y y y分别为A和B把对方视为生存威胁的概率,这可被看成对方文明对己方文明威胁的一种评估。有序概率对 ( x , y ) (x,y) (x,y)的具体取值可以被视为相应文明对其外文明的交流策略。假设文明间不同的交流策略会给双方文明带来不同效果,汇总如表所示,其中 a , b , c , d a,b,c,d a,b,c,d均为待定参数,且假设 a + b ≠ c + d a+b\ne c+d a+b=c+d,即 a − b ≠ c − d a-b\ne c-d a−b=c−d,解释为:在文明B敌视文明A的情形下,文明A是否敌视文明B所造成的文明A的收益差别,和文明B交好文明A的情形下,文明A是否敌视文明B所造成的文明A的收益差别,是不同的。下面我们考虑文明A(即地球文明)的应对策略。
则在策略 ( x , y ) (x,y) (x,y)下,文明A的收益期望 W A W_A WA为
W A = a x y + b ( 1 − x ) y + c x ( 1 − y ) + d ( 1 − x ) ( 1 − y ) W_A=axy+b(1-x)y+cx(1-y)+d(1-x)(1-y) WA=axy+b(1−x)y+cx(1−y)+d(1−x)(1−y)
化简可得
W A = ( a + d − c − d ) x y + ( b − d ) y + ( c − d ) x + d W_A=(a+d-c-d)xy+(b-d)y+(c-d)x+d WA=(a+d−c−d)xy+(b−d)y+(c−d)x+d
文明A自然希望 W A W_A WA的值尽可能高;而文明B则希望 W A W_A WA的值尽可能低,以使文明A对其威胁最小化。
二元函数 z = W A ( x , y ) z=W_A(x,y) z=WA(x,y)的图像(曲面 Γ \Gamma Γ)其实是一个“直纹面”。所谓的直纹面,就是我们可以将其看成由无数条直线(段)的并集形成的曲面(带边或不带边)。 Γ \Gamma Γ是直纹面,是因为无论 x x x取何值, W A ( x , y ) W_A(x,y) WA(x,y)均为关于 y y y的线性函数,即
Γ = ∪ { ( t , y , z ) ∣ z = [ ( a + d − c − b ) t + ( b − d ) ] y + [ ( c − d ) t + d ] } , 0 ≤ t ≤ 1 \Gamma=\cup\{(t,y,z)|z=[(a+d-c-b)t+(b-d)]y+[(c-d)t+d]\},0\le t\le 1 Γ=∪{(t,y,z)∣z=[(a+d−c−b)t+(b−d)]y+[(c−d)t+d]},0≤t≤1
注意到
W A = ( a + d − c − b ) ( x − d − b a + d − b − c ) ( y − d − c a + d − b − c ) + a d − b c a + d − b − c W_A=(a+d-c-b)\bigg(x-\frac{d-b}{a+d-b-c}\bigg)\bigg(y-\frac{d-c}{a+d-b-c}\bigg)+\frac{ad-bc}{a+d-b-c} WA=(a+d−c−b)(x−a+d−b−cd−b)(y−a+d−b−cd−c)+a+d−b−cad−bc
换元
{ u = 1 2 ( x + y + c + b − 2 d a + d − b − c ) v = 1 2 ( x − y + b − c a + d − b − c ) \left\{ \begin{aligned} u=\frac{1}{2}\bigg(x+y+\frac{c+b-2d}{a+d-b-c}\bigg) \\ v=\frac{1}{2}\bigg(x-y+\frac{b-c}{a+d-b-c}\bigg) \\ \end{aligned} \right. ⎩
⎨
⎧u=21(x+y+a+d−b−cc+b−2d)v=21(x−y+a+d−