数学建模两篇小文

1.雪球的融化

设雪球在融化时体积的变化率与表面积成比例,并且在融化过程中它始终为球体。该雪球在开始时的半径为6cm,经过2h后,其半径缩小为3cm。求雪球的体积随时间变化的关系。

      ~~~~~       t t t时刻雪球的体积为 V ( t ) V(t) V(t),其表面积为 S ( t ) S(t) S(t),由题设得
d V d t = − r V 2 3 , V ( 0 ) = 288 π , V ( 2 ) = 36 π \frac{dV}{dt}=-rV^{\frac{2}{3}},V(0)=288\pi,V(2)=36\pi dtdV=rV32,V(0)=288π,V(2)=36π
分离变量积分得方程的通解为
V ( t ) = 1 27 ( C − r t ) 3 V(t)=\frac{1}{27}(C-rt)^3 V(t)=271(Crt)3
利用条件 V ( 0 ) = 288 π V(0)=288\pi V(0)=288π V ( 2 ) = 36 π V(2)=36\pi V(2)=36π确定出常数 C C C r r r,代入后得雪球的体积随时间变化关系为
V ( t ) = π 6 ( 12 − 3 t ) 3 V(t)=\frac{\pi}{6}(12-3t)^3 V(t)=6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数小模.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值