- 博客(15)
- 收藏
- 关注
原创 神经网络实战前言(补充)
在这个例子中,“男”会被编码为`[1,0]`,而“女”会被编码为`[0,1]`。在这个例子中,“初一”会被编码为`[1,0,0]`,“初二”会被编码为`[0,1,0]`,而“初三”会被编码为`[0,0,1]`。从图中可以看出,根据鸢尾花的花瓣的长度和宽度已经可以明显地区分出鸢尾花的类别了,其次鸢尾花的花瓣的长度和宽度呈现线性关系。从上面的图中,我们可以看到数据有150行,每一行有5列,其中前四列的数据属性是浮点型的数值形式,花萼的长度宽度、花瓣的长度和宽度,最后一列是非数值形式,表示花的种类。
2024-03-11 15:52:45 967 1
原创 神经网络实战前言
1. `self.layer1 = sigmoid(np.dot(self.input, self.weights1))`:将输入数据 `self.input` 与第一层的权重矩阵 `self.weights1` 相乘,并通过 Sigmoid 激活函数进行非线性变换,得到第一层的输出 `self.layer1`。值得注意的是,这里的 `sigmoid` 函数是一个自定义的激活函数,用于将神经网络的输出限制在0到1之间。:随机初始化隐藏层到输出层之间的权重矩阵,矩阵大小为隐藏层的神经元数(4)乘以输出值。
2024-03-10 19:52:25 2590 2
原创 聚类简单讲解
聚类任务是指将一组数据分成多个不同的组(或簇),使得同一组内的数据点彼此相似,而不同组之间的数据点尽可能不相似的过程。聚类任务的目标是发现数据中的固有结构,而不需要事先知道数据的类别信息。聚类算法通常根据数据点之间的相似度或距离将它们分组,使得组内的数据点更加相似,组间的数据点差异更大。具体来说,聚类算法可以作为一个独立的过程,用于发现数据的内在分布结构,也可以作为其他学习任务(如分类)的前驱过程。
2024-03-07 13:38:29 2584 1
原创 集成学习简单讲解
在机器学习中,集成学习是一种通过结合多个学习器(即个体学习器)来构建更强大模型的技术。个体学习器是指基本的、弱的学习算法,而集成学习通过组合这些个体学习器的预测结果,从而获得更准确、更稳定的预测结果。个体学习器可以是同质的(即使用相同的学习算法,但在不同的训练集上训练)或者异质的(使用不同的学习算法或者在不同的特征子集上训练)。集成学习可以通过多种方式组合个体学习器的预测结果,其中最常见的方法包括投票法(Voting)、平均法(Averaging)、堆叠法(Stacking)等。
2024-03-06 17:21:58 1146 1
原创 贝叶斯决策器简单讲解
贝叶斯决策论是一种基于概率统计的决策方法,其原理是利用贝叶斯定理来计算在观察到的数据下,每个类别的后验概率,并基于这些后验概率来做出最优决策,以最小化预期损失或风险。在贝叶斯决策论中,我们假设每个样本都属于某个类别,并通过计算后验概率来确定样本最有可能属于哪个类别。:在观察到任何数据之前,我们对每个类别的概率分布的猜测。这些概率通常基于领域知识或历史数据。:给定数据样本,似然函数描述了每个类别生成该样本的可能性。似然函数通常基于统计模型或假设。:观察到数据的概率,也称为证据。
2024-03-05 13:36:06 1101 1
原创 神经网络简单讲解
当我们谈论神经元模型时,通常是指人工神经元模型,也称为人工神经元或神经元。这是模拟生物神经元的数学模型,是构成人工神经网络的基本单元。:神经元接收来自其他神经元的输入,每个输入都有一个权重,用来调节其重要性。:输入和对应的权重相乘后求和,得到加权和。加权和表示了神经元对输入的综合响应。:加权和被送入激活函数,激活函数的作用是对加权和进行非线性变换,产生神经元的输出。常用的激活函数包括 sigmoid 函数、ReLU 函数等。:有些模型中,神经元的输出需要超过一个阈值才会被激活。
2024-03-03 20:02:06 987
原创 线性模型简要讲解
对数线性回归的主要优点之一是,当因变量的取值范围很广时,对数变换可以使得因变量的分布更接近正态分布,有助于提高模型的拟合效果。具体来说,一个类别的样本数量远远大于另一个类别的样本数量,导致模型在训练和预测过程中对于少数类别的识别能力不足,容易出现预测偏差。最小二乘法的基本思想是使得残差(实际观测值与模型预测值之间的差异)的平方和最小化,从而得到最优的参数估计值。LDA与PCA(主成分分析)相比,PCA只考虑样本间的方差信息,而LDA同时考虑了样本的类别信息,因此在许多情况下,LDA能够获得更好的分类性能。
2024-03-02 22:09:50 1091
原创 模型评估与选择(下)
在机器学习中,比较检验是用于比较不同模型、算法或参数设置之间性能差异的一种统计分析方法。比较检验可以帮助我们确定哪种方法更适合解决特定的问题,从而指导模型选择和参数调优。:通过比较不同设置下的模型性能,可以验证模型的稳定性和一致性,即模型在不同数据集或参数下的表现是否一致。:比较检验可以帮助我们确定哪种模型或算法在给定数据集和任务下表现最好,从而选择最佳的模型或算法。:比较检验也可以用于验证某些假设或理论,例如某种算法是否在某种情况下比另一种算法更有效。
2024-03-02 19:51:47 1021
原创 模型评估和选择(上)
周志华老师的《机器学习》笔记在机器学习中,经验误差(Empirical Error)指的是模型在训练集上的误差,即模型对训练集中样本的预测误差。通常使用损失函数来衡量经验误差,例如在分类问题中可以使用交叉熵损失函数,回归问题中可以使用均方误差损失函数。经验误差可以帮助评估模型在训练集上的拟合程度,但不能直接反映模型在未见数据上的泛化能力。过拟合(Overfitting)指的是模型在训练集上表现很好,但在测试集(或其他未见数据)上表现较差的现象。
2024-03-02 15:14:39 1142
原创 机器学习~绪论
在机器学习中,奥卡姆剃刀的意义是指在选择模型时,应该倾向于选择最简单的模型,以避免过度拟合训练数据。过度拟合是指模型在训练数据上表现很好,但在未见数据上表现不佳,即模型过于复杂,试图捕捉训练数据中的噪声或细节,而不是真正的模式或规律。在监督学习中,假设空间通常由参数化的函数族表示,例如线性回归模型中的所有线性函数、决策树中所有可能的决策树等。这个定理的核心思想是,不同的机器学习问题具有不同的特点和结构,适用于某个问题的算法不一定适用于另一个问题。换句话说,假设空间是模型可以学习的所有可能的函数的集合。
2024-02-29 21:01:56 1124
原创 GEE计算VCI(植被状况指数)及VHI(植被健康指数)
Google Earth Engine(GEE)提供了强大的工具和功能,使得对遥感数据进行高效处理和分析成为可能。其中,计算植被状况指数(VCI)和植被健康指数(VHI)是遥感领域中的重要应用之一。本文将介绍如何使用GEE计算VCI和VHI,并解释这些指数在遥感分析中的重要性。
2024-02-22 13:38:00 3545 8
原创 基于植被光学特征使用遥感影像监测土壤水
本文介绍了利用遥感数据构建的多种植被光学特征指数,如归一化植被指数(NDVI)、植被状态指数(VCI)、距平植被指数(AVI)等,以及它们在监测植被生长和土壤水分含量方面的应用。这些指数通过分析植被反射光谱特征的差异,提供了有效的工具来监测植被生长和土壤水分,为农业生产和资源管理提供重要参考。
2024-02-20 17:21:34 1876
原创 土壤水分遥感监测的简单介绍
土壤水分在水、能量和生物地球化学循环中扮演着重要角色,对水资源管理、农业生产和气候变化等研究至关重要。利用遥感数据反演土壤水分是获取这一信息的重要途径。目前的研究发现,单独使用这些特征来反演土壤水分存在一些问题。未来的研究方向将会更多地关注如何综合利用这些特征来提高水分反演的准确性。
2024-02-20 16:00:38 1293
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人