涉及技术:图像预处理,卷积神经网络
图像预处理:
统一分辨率:保证像素个数相同
随机裁剪图像:解决拍摄位置不同
更改颜色空间:消除白天与夜晚的差别
随机调节亮度,对比度
卷积神经网络:
基础知识
卷积:得到Feature图
池化:减少特征
平坦:拉平特征
全连接:接收前面卷积和池化输出的结果,然后通过激励函数对数据进一步进行非线性化处理,并将计算结果输出给下一层。
激活:非线性
多分类:Softmax分类器,将输出结果转化为概率分布问题。
独热编码:One-Hot-Encoding
正则化:防止过拟合
实验流程:
1.图像预处理
2.CNN模型构建
- 创建一个空模型
- 添加输入层,指定输入大小
- 添加卷积层,指定卷积核大小和数量
- 添加正则化层,指定丢弃神经元例
- 添加池化层,设置池化参数
- 重复以上步骤,然后添加平坦层和全连接层
- 添加输出层,根据图像种类个数设置输出神经元数量
3.设置模型训练参数
- 损失函数:常用的损失函数:交叉嫡,MSE,0-1误差。
- 优化器
- 验证集/训练集