基于卷积神经网络实现景区精准识别场景

本文详细介绍了图像预处理技术,包括统一分辨率、随机裁剪、颜色空间转换和亮度对比度调整,旨在消除图像差异。接着,探讨了卷积神经网络的基础,如卷积、池化、全连接层及其在多分类任务中的应用,如Softmax分类器。此外,还涉及正则化防止过拟合,以及实验流程,包括模型构建和训练参数设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

涉及技术:图像预处理,卷积神经网络

图像预处理:

统一分辨率:保证像素个数相同

随机裁剪图像:解决拍摄位置不同

更改颜色空间:消除白天与夜晚的差别

随机调节亮度,对比度

卷积神经网络:

基础知识

卷积:得到Feature图

池化:减少特征

平坦:拉平特征

全连接:接收前面卷积和池化输出的结果,然后通过激励函数对数据进一步进行非线性化处理,并将计算结果输出给下一层。

激活:非线性

多分类:Softmax分类器,将输出结果转化为概率分布问题。

独热编码:One-Hot-Encoding

正则化:防止过拟合

实验流程:

1.图像预处理

2.CNN模型构建

  1. 创建一个空模型
  2. 添加输入层,指定输入大小
  3. 添加卷积层,指定卷积核大小和数量
  4. 添加正则化层,指定丢弃神经元例
  5. 添加池化层,设置池化参数
  6. 重复以上步骤,然后添加平坦层和全连接层
  7. 添加输出层,根据图像种类个数设置输出神经元数量

3.设置模型训练参数

  1. 损失函数:常用的损失函数:交叉嫡,MSE,0-1误差。
  2. 优化器
  3. 验证集/训练集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值