蓝桥杯第9天(Python组)

并查集基本框架使用
  1. 初始化

  1. 查找并查集,不相同就更新根接点

  1. 合并并查集

import sys
sys.setrecursionlimit(600000)

from collections import deque
#collections.deque.

def init_set():   # 并查集的初始化
  for i in range(N):
    s.append(i)

def find_set(x):
  if (x!=s[x]):
    s[x] = find_set(s[x])  # 递归查找根节点同时更新更节点
  return s[x]

def merge(x,y):   # 合并并查集
  x = find_set(x)
  y = find_set(y)
  if x!=y:
    s[x]=s[y]

n,m = map(int,input().split())
s = []  # 并查集
N=800000
init_set()
for i in range(m):  # 行
  op,x,y = map(int,input().split())
  if op==1:
    merge(x,y)  # 合并并查集
  if op==2:
    if(find_set(x) == find_set(y)):  print("YES")
    else: print("NO")
  

并查集的一种简易判断方法(合根数量,每次合并减一即可)
import sys
sys.setrecursionlimit(600000)

from collections import deque
#collections.deque.

def init_set():   # 并查集的初始化
  for i in range(N):
    s.append(i)

def find_set(x):
  if (x!=s[x]):
    s[x] = find_set(s[x])  # 递归查找根节点同时更新更节点
  return s[x]

def merge(x,y):   # 合并并查集
  x = find_set(x)
  y = find_set(y)
  
  if x!=y:   # 合根
    s[y]=s[x]
    return True
  else: return False  # 相等说明合根过一次

m,n = map(int,input().split())
s = []  # 并查集
N=800000
init_set()
k = int(input())
ans = n*m   # 发现一个合根就减一
for i in range(k):  # 行
  x,y = map(int,input().split())
  if(merge(x,y)):
    ans-=1
print(ans)

暴力|哈希|并查集 三种方法
import os
import sys

# 暴力法1  30%
# n = int(input())
# a = [int(i) for i in input().split()]   #将输入的转为矩阵
# for i in range(1,n):  # 1---n-1  从第二个开始 a[0],a[1],a[2],a[3].........
#   for j in range(i):    # 从 0--i-1
#     while a[i] in a[0:i] :  # 后续元素在前面出现一直加1,直到不出现
#       a[i]+=1

# for i in a: print(i,end=' ')

# 暴力法2   60%
# n = eval(input())
# a = [int(i) for i in input().split()]

# s = set()   # 集合为哈希表存储 ,查找是否存在更快
# for i  in range(n):
#   while a[i] in s:
#     a[i]+=1
#   s.add(a[i])
# print(*a)
 
#并查集 100%
def find_set(x):
   if (x != s[x]): s[x] = find_set(s[x])
   return s[x]

def init_set():
  for i in range(800000):
    s.append(i)
s=[]  # 并查集
init_set()
n = int(input())  
a = [int(i) for i in input().split()]

for i in range(n):
  root = find_set(a[i])  # 查找并查集对应的,初始状态findset(a[i])==a[i]
  a[i] = root  # 将并查集中的数赋值给a[]
  s[root] = find_set(root+1)   # 并查集的指向加1
print(*a)

一种暴力方法(找规律)
import os
import sys

# 请在此输入您的代码
k = int(input())  # 多少个存钱罐
m =[int(input()) for _ in range(k)]
count = 0
vis = [0]*(k+1)  # 不要首元素
for i in range(1,k):
  if m[i]==i+1:  # 钥匙在自己存钱罐
    count+=1
  vis[m[i]]=1  # 没出现自己的钥匙
print(vis.count(0)-1+count)

简单数论(gcd,lcm)
import sys
sys.setrecursionlimit(600000)

from collections import deque
#collections.deque.

import math

def lcm(x,y):
  return x*y//math.gcd(x,y)
a,b,c = map(int,input().split())
print(lcm(lcm(a,b),c))

找最小公差(math.gcd)
import sys
sys.setrecursionlimit(600000)

from collections import deque
#collections.deque.

import math

def lac(x,y):
  return x*y//math.gcd(x,y)

n = int(input())
m =[0]+ [int(x) for x in input().split()]   # 读入元素
b=0
for i in range(2,n+1):  # 1 - n
   b=math.gcd(b,m[i]-m[i-1])
#print(b)
m.sort()
print((m[-1]-m[1])//b+1)

gcd,lcm运用(理解公倍数,公约数的意义)
import os
import sys

# 请在此输入您的代码
import math

def lcm(x,y):  # 求最大公约
  return x*y//math.gcd(x,y)

n = int(input())

for i in range(n):
  a0,a1,b0,b1 = map(int,input().split())
  ans =0  # 记录个数
  for x in range(1,int(math.sqrt(b1))+1):
    if b1 % x ==0:  # 表示b1是x的公倍数  # 抓住公倍数这个条件
      if math.gcd(x,a0)==a1 and lcm(x,b0)==b1:
        ans+=1
      y=b1//x
      if x==y:
        continue
      if  math.gcd(y,a0)==a1 and lcm(y,b0)==b1:
        ans+=1


  print(ans)

简单数论放松题
import sys
sys.setrecursionlimit(600000)

from collections import deque
#collections.deque.

import math

a,b,n = map(int,input().split())
week = a*5+b*2
day1 =7*(n//week)
left = n % week  # 剩下的数量
if left<=5*a:  # 前五天内可完成
  day2 =left//a + (1 if left % a else 0)  # 三目运算符

else:  # 周末才能完成
  day2 =5+(left-5*a)//b + (1 if (left-5*a)%b else 0)

print(day1+day2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值