使用斯坦福分词器进行词性标注
前言
中文分词是中文文本处理的一个基础步骤,同时也是中文人机自然语言交互的基础模块,与英文不同的是,中文句子中没有词的界限,因此在进行中文自然语言处理时,通常需要先进行分词,分词效果将直接影响词性,句法树等模块的效果场景不同,要求也不同。在人机自然语言交互中,成熟的中文分词算法能够达到更好的自然语言处理效果,帮助计算机理解复杂的中文语言。基于统计的机器学习算法stanford,基本思路是对汉字进行标注训练,不仅考虑了词语出现的频率,还考虑上下文,具备良好的学习能力,因此对歧义词和未登录词的识别都具有良好的效果。
一、斯坦福分词器是什么?
Stanford CoreNLP是一个自然语言处理工具包。它集成了很多非常实用的功能,包括分词,词性标注,句法分析等等。这不是一个深度学习框架,而是一个已经训练好的模型,实际上可以类比为一个软件。目前市面上有不少类似的工具,结巴分词、清华、哈工大等等,相比之下我个人认为斯坦福这一款有三个值得选择的理由(也可能是优势,但是我没用过其他工具所以没法比):功能足够多,一站式解决所有主流需求;操作足够方便,放到 Python 里基本上就是一两行代码;
语言支持广泛,目前支持阿拉伯语,中文,英文,法语,德语,西班牙语,做平行语料的对比非常方便。Stanford CoreNLP 本身是 Java 写的,提供了 Server 的方式进行交互,可以很方便地在Python 中使用。使用极少的代码就能实现我们想要的功能。
二、使用步骤
1.去官网下载工具包

包括核心包和中文分包两种,下载完成后,将中文包解压缩到核心包中,形成一个完整的包,方便我们去调用。核心部分已经包括了英语的处理能力,因为我们要处理的内容包括中文,所以还要下载与中文相关的程序包下载成功后,导引根目录即我们下载的核心包中即可完成工具包中相应的操作。

这就是弄完之后的图,形成一个总包,安装成功的工具包中就可以通过python直接调用了,其中要注意的是中文包和我们下载的核心包的版本要对应。要注意的是文件夹不能含有中文,否则会读入不进去。

本文介绍了如何使用斯坦福分词器进行词性标注,包括下载工具包、导入库、分词、词性标注、句法分析等步骤,并讨论了准确率、精准率和召回率等评估指标。斯坦福分词器以其功能丰富、操作简便和多语言支持等特点成为中文自然语言处理的好帮手。
最低0.47元/天 解锁文章
140

被折叠的 条评论
为什么被折叠?



