题目:
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1
提示:
你可以假设 nums 中的所有元素是不重复的。
n 将在 [1, 10000]之间。
nums 的每个元素都将在 [-9999, 9999]之间。
题解一:左闭右闭法
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size()-1;//区间卡死在[0,right]之间
while(left<=right){
int mid = (left + (right-left)/2);
if(nums[mid]>target){
right=mid-1;//闭区间[left,mid-1] mid已经判断过了
}
else if(nums[mid]<target){
left=mid+1;//闭区间[mid+1,right]
}
else{
return mid;
}
}
return -1;
}
};
经过两轮找到了下标 二分查找的思想就是每次查找撇一半 达到O(logn)的时间复杂度
为什么left要小于等于right呢 要加上这个等于号呢
因为如果left和right指的是同一个数 此时如果没有等于号会直接return-1 表示没有找到 如果有了等于号 取它俩平均值 就可以得到mid 返回mid下标
第二种写法 左闭右开
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
int middle = left + ((right - left) / 2);
if (nums[middle] > target) {
right = middle; // target 在左区间,在[left, middle)中
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,在[middle + 1, right)中
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
};
与第一种不同的地方
left从0开始 right是从边界+1开始
因为左闭右开 所以left==right是不可能的也是无效的 因为一个开一个闭 不可能同时具有两种状态
所以不用考虑等于这种情况
第二就是当用mid值与target比较时 如果大于target left=mid+1 和第一种一样 如果小于target right =mid 因为右边是开区间 所以是虚的
总结
循环中要始终坚持根据查找区间的定义来做边界处理 边界处理好了 一切迎刃而解