调用通义大模型做情感分析

import requests
import pandas as pd

# https://dashscope.console.aliyun.com/billing 查看调用模型的计费
# https://dashscope.console.aliyun.com/apiKey 获取API密钥

# 设置调用参数,生成回答
def chatgpt(prompt):
    headers = {
        'Authorization': '你的密钥',  # 这里替换你的密钥
        'Content-Type': 'application/json',
    }

    json_data = {
        'model': 'qwen-max', #通义千问最高模型收费很贵
        'input': {
            'messages': [
                {
                    'role': 'system',
                    'content': '你是一个情感分析模型', #定义角色
                },
                {
                    'role': 'user',
                    'content': str(prompt),
                },
            ],
        },
        'parameters': {},
    }
    
    try:
        response = requests.post(
            'https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation',
            headers=headers,
            json=json_data,
        )
        
        content = response.json()
        last_text = content['output']['text']
        return last_text
    except Exception as e:
        print(f"Error: {e}")
        return None

#定义要读取多少行,修改文件路径
df = pd.read_excel(r"你的路径\data.xlsx").iloc[100:200,:] 
sent_list = []
rensponse_list=[]

for index, row in df.iterrows():
    review = row['评论内容']
    prompt = f"文本: '{review}'. 任务:分析这条评论对转基因食品的支持度,回复0-1之间的浮点数。特别注意考虑是否含有讽刺意味,因为留言者很可能会讽刺那些反对转基因食品的人。如果含有讽刺意味则要提高支持度。结构化输出:支持度、理由"
    sentiment = chatgpt(prompt)
    print(index+1, '|', sentiment, "\n", "—"*10, "\n")
    rensponse_list.append(sentiment[12:])
    sent_list.append(str(sentiment)[4:7]) 
sent_list #检查输出是否有空值,有的话要补,因为大模型可能卡机
df['LLM支持度']=sent_list
df['LLM回复语']=rensponse_list
outfile=df[['LLM支持度','LLM回复语']]
outfile.to_csv('情感分析.csv',index=True)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值