时空(2)

把预言的娱乐成分放在一边,让我们引入一些重要的专业术语。诺查丹玛斯的死是一个“事件”,跟阿道夫·希特勒(Adolf Hitler)的诞生和伦敦大火一样。诺查丹玛斯看到他死后的事件,比如那场伦敦大火,就颠倒了大火和他的死亡这两件事件的顺序。再明显不过,诺查丹玛斯死在大火之前,因此他不可能看到它。他若要在死前看到它,那么必须颠倒事件顺序,让大火在他死前发生。更明确点说,假设诺查丹马斯巧妙地安排了这场大火。比如,他死时留下一笔银行存款,鼓励某人于1666年9月2日午夜后不久在布丁巷放火。这样,诺查丹玛斯的生死和伦敦大火两个事件之间就建立了更加明确的因果关系。稍后会谈到,在爱因斯坦的宇宙中,事件之间的顺序(事件之间的因果关系)不可逆转,因果关系无法被撼动。

但是,若两个事件在时间和空间中相距足够远,以至于它们之间不可能产生任何影响,那么它们的顺序是可以颠倒的。也就是爱因斯坦的理论允许事件的顺序被颠倒,只要这样做对宇宙的运行不产生影响。稍后,我们将解释“足够远”的意思。现在,因果关系的概念已经是我们构建时空理论的公理了,它是否适用,要看能否成功预言实验结果。让我们拭目以待。其实,诺查丹玛斯做过一次成功的预言。当他患上一场特别严重的痛风后,他告诉秘书:“日出时,你将发现我已死去。”第二天早上,人们发现他的确死在了地板上。因果关系和时空有什么关系?特别是,与时空距离有什么关系?我们先解开答案吧。坚持具有因果关系的宇宙,让我们没有多少时空结构可选择。实际上,在保留因果关系的情况下,只有一种方法能把时间和空间结合起来,形成时空结构。任何其他方式构建的时空,都会违反因果关系,让一些异想天开的事情成为可能,比如,可以回到过去阻碍自己的出生,比如,允许诺查丹玛斯篡改自己以往的生活方式,避免痛风发生。

现在,让我们从因果关系回来,回到发展时空距离这个挑战上来。我们暂时把时间放在一边,从三维空间中最普通的距离概念开始。我们对这个距离概念比较熟悉,先拿它热热身。测量地图上两个城市之间的最短距离,那么地球表面上这两点最短距离的路径将是一条曲线,这条曲线叫作大圆航线。这对坐过长途飞机并玩过飞机娱乐系统的乘客再熟悉不过了,因为,他可以时刻从系统的地图上看到自己的飞行动态。地球地图,上面画着一条线,对应着曼彻斯特和纽约之间的最短距离。拿着地球仪,仔细端详,有这样一条线,一条标识着两点之间最短距离线。它是一条曲线,这一点需要多点说明。原因是地球是个球体,它具有一个弯曲的表面。假如把地球的表面平铺成一张平面地图,那么地图中,格陵兰岛看起来会比澳大利亚大得多,实际上它比澳大利亚小很多。我们很清楚,直线距离是平面空间中两点之间的最短距离。这属于平面几何,又称为“欧几里得几何”。欧几里得当时并不知道他的平面几何只是几何家族中的一个成员。这事直到19世纪才搞清楚,非欧几里得几何在数学上也是合理的,有些还可以用来描述自然。弯曲的地球表面就可以由非欧几里得几何来描述。在非欧几里得空间中,两点之间的最短距离不是欧氏直线。

欧几里得几何还有其他的基本性质,有一些我们比较熟悉,但这些基本性质在地球表面也不再成立了。例如,三角形内角和不再等于180°。再如,在赤道上画两条指向南北的平行线,将在地球两极相交。在弯曲空间中,欧几里得方法不再适用,该如何计算距离呢?具体来讲,如何在地球表面计算距离呢?地球仪和绳子就可以提供一个易于上手的方法,来正确计入地球曲率的影响。对飞行员来说,拿一个地球仪,指出两个城市,在它们之间拉一根绳子,用尺子测量所需绳子的长度,然后将这个长度与地球和地球仪大小的比值相乘,就可以得到两座城市间的距离了。假如手头没有地球仪呢?假如我们的任务是编写一个程序,用于导航呢?很多情况下,绳子测量是达不到要求的,我们需要做得更好,需要找到一方程式,分别给定任意两点经度、纬度,给定地球大小和形状的情况下,计算这两点间的距离。找到这个方程式并不难,若你懂一些数学,可以自己尝试下。我们不打算把它写出来,也没必要,你需要记住的是有这么一个方程,它不属于欧几里得几何。它能够计算球体上两点之间的最短距离,就像勾股定理能够计算桌面上两点(三角形斜边)之间最短距离一样。直线在欧几里得空间中表示两点之间最短的距离,不再适用弯曲空间。对于弯曲空间和平直空间,我们引入测地线这个新的术语,来表示两点之间的最短距离。那么,直线是平面空间的测地线,大圆是地球表面的测地线。有关三维空间的距离就写到这里。让我们继续,去处理如何确定时空距离的问题,我们需要加入时间,问题因此会变得复杂一些。

我们曾给了一个起床和在厨房吃早餐的简单例子,用到了空间距离和时间间隔的概念。床和厨房之间的空间距离是10米,这样说没问题。如果说从起床到吃完早餐的时间距离是1小时,听起来就比较奇怪了。这不是我们平常思考时间的方式,我们不习惯用这种几何学的语言。我们宁愿说:“从我起床到吃完早饭,过去了一个小时。”我们不会说:“从我起床到在厨房坐下来,10米过去了。”空间就是空间,时间就是时间,日常谈话中,决不能把两者混为一谈。然而,现在我们恰恰需要把两者混合在一起,因为,这可能是麦克斯韦和爱因斯坦重建事物秩序的唯一方法。让我们带着这个任务继续下去,看看会得到什么结论。这可能是最难懂的部分,因为这里用到了大量的抽象思维,这在日常生活中很少使用。抽象思维赋予科学力量,也给它带来了艰涩的坏名声。幸好,在电场和磁场的讲述中,我们已经有了抽象概念的经验,将空间和时间合并在一起,这个抽象过程可能就不再具有挑战性了。

当说到“时间距离”时,时间被视为一个额外的维度。我们曾接触过“3D”这个词语,它是指上下、左右和前后等空间的三个维度。为了定义时空距离,我们试图把时间加到维度的框架中,这实际上是在创建一个四维时空。时间维度与空间维度有所不同。人们可以在空间中自由行动,在时间中却只能勇往直前。但这不算是障碍。把时间看作“另一个维度”是一种抽象的飞跃,我们不得不这样做。这话听起来让人困惑不解,我们需要发挥想象力,去感受一下一个二维生物的世界,作为一个二维生物,你只能向前、向后、向左和向右移动。你从来没有经历过上下起伏。你无法在平坦的世界里理解第三个维度。除非你是一个数学爱好者,乐于接受第三个维度,你仍然可以通过数学来理解脑海中无法想象的额外维度。四维空间对人类来说也是这样。但随着本书内容的展开,把时间看作“另一个维度”就不会那么别扭了。要知道,刚到曼彻斯特大学,准备学物理的大学生,学到这个观点时,也会困惑很久。第一次遇到难的概念就把能它消化掉的人很少。概念在慢慢使用中变得清晰。用道格拉斯·亚当斯(Douglas Adams)[29]的话来说:“不要惊慌!

下面我们轻松一会,认识下“事情的发生”,这非常平常,如,我们醒来,做早餐,吃早餐,等等。我们将事物的发生称为“时空中的事件”。时空中的事件可用4个数字来唯一地表示,它们是三个空间坐标,用来描述事件发生的地点,一个时间坐标,用来描述事件发生的时间。空间坐标可以使用任何旧的测量系统来确定。例如,用经度、纬度和高度来表示地球附近发生的事情。这样,你在床上的坐标可能是N 53°28’2.28"W 2°13’50.52",海拔38米。同样,时间坐标是用一个时钟来指定(因为时间不是普遍的,需要说清楚是谁的时钟)。当闹钟响了,你醒来时,可能是格林尼治标准时间早上7点。以同样的方式,4个数字可以唯一地定位时空中的任何事件。请注意这些坐标是由特定的坐标系确定的,都是相对于穿过英国伦敦格林尼治的一条线来测量的。1884年10月,这项公约由25个国家商定,其中反对的是圣多明各(法国弃权)。但选哪个坐标系没有什么特别要求。选择什么样的坐标系,结果没有什么差别。这一点很重要。

早晨醒来,是一个事件,我们把它看作我们时空中的第一个事件。把吃完早餐看作第二个事件。回想一下之前的说法,两个事件的空间距离是10米,时间距离是1小时。为了准确起见,需要这样表述:“我用卷尺的两端连接床和桌子,测量了床和早餐桌之间的距离”“我用床边的闹钟和厨房里的闹钟测量了时间间隔”。别忘了,这些时间距离和空间间隔并不是普遍的,我们没有与其他人形成共识。坐飞机飞过你家的人就会认为,你的闹钟慢了,你的床和早餐桌之间的距离缩小了。是否还记得,我们的目标恰恰是在时空中找到一个大家能达成一致的距离?关键问题来了。“如何用10米和1小时构造一个具有不变性的时空距离?”针对这个问题,我们需要小心谨慎,就像地球表面上的距离一样,很可能会放弃欧几里得几何。

计算时空距离,首先要解决单位的问题。时空距离的单位是米,时间距离的单位为秒,怎么将两者结合起来呢?这就像把橘子和苹果相加,毕竟它们不是一样的东西。然而距离和时间可以通过vx/t相互转换,距离可以转换成时间,时间也可以转换成距离。对上面的式子做点小转变,就可以把时间写成tX/v,或者把距离写成xV。也就是说,距离和时间可以通过速度相互转换。这里引入一个速度c,作为标准速度。这样,只要用标准速度乘以时间间隔,就可以用米做单位来表示时间了。在以上推理过程中,我们没有限定这个速度的具体数值,因为还没有理由确定它的实际值。这种时间和距离互换的技巧在天文学中非常常见。例如,我们到恒星或星系的距离通常是以光年来衡量的,也就是光在一年内所经过的距离。光年是一个以年为单位的距离,我们已经习惯了这样的用法。不难看出,在天文学中,校准速度就是光速。

这又进了一步,使时间间隔和距离间隔具有相同的表示形式。例如,它们都可以以米、英里、光年或诸如此类的方式给出。图4显示了时空中的两个事件,它们用小十字表示。现在最重要的事情是找到一个规则来计算这两个事件在时空中相距多远。看这张图,给定其他两边的长度,我们想知道斜边的长度。为了更精确一点,我们把三角形底边的长度标记为X,高度标记为ct。这意味着两个事件在空间上相距x,在时间上相距ct。因此,参照前面的例子,x10米是从床到餐桌的空间距离,t1小时是时间上的距离,我们的目标是回答“给定x和ct,斜边s是多少?”这个问题。到目前为止,因为c是任意的,ct可以是任何数值,所以我们仍得不到答案。继续前进!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yyc_audio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值