1005 继续(3n+1)猜想

卡拉兹(Callatz)猜想已经在1001中给出了描述。在这个题目里,情况稍微有些复杂。

当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数。例如对 n=3 进行验证的时候,我们需要计算 3、5、8、4、2、1,则当我们对 n=5、8、4、2 进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这 4 个数已经在验证3的时候遇到过了,我们称 5、8、4、2 是被 3“覆盖”的数。我们称一个数列中的某个数 n 为“关键数”,如果 n 不能被数列中的其他数字所覆盖。

现在给定一系列待验证的数字,我们只需要验证其中的几个关键数,就可以不必再重复验证余下的数字。你的任务就是找出这些关键数字,并按从大到小的顺序输出它们。

输入格式:

每个测试输入包含 1 个测试用例,第 1 行给出一个正整数 K (<100),第 2 行给出 K 个互不相同的待验证的正整数 n (1<n≤100)的值,数字间用空格隔开。

输出格式:

每个测试用例的输出占一行,按从大到小的顺序输出关键数字。数字间用 1 个空格隔开,但一行中最后一个数字后没有空格。

输入样例:

6
3 5 6 7 8 11

输出样例:

7 6

整体思路
我用的方法很粗暴。先对输入序列从小到大排个序,是为了方便最后“按从大到小的顺序输出关键数字”这一操作。再遍历序列中的所有数据,进行卡拉兹猜想直至得到1,于是产生了一系列中间数据,对这些中间数据逐个与输入序列中的数据对比,如果某个数据出现在输入序列中,则该数据不输出。
以输入样例为例,排序后序列为3 5 6 7 8 11。
对数据3,卡拉兹猜想得到的中间数据是3 5 8 4 2 1,其中5、8在输入序列中出现,就把输入序列中的5、8标记为不输出。
对数据5,卡拉兹猜想得到的中间数据是5 8 4 2 1,其中8在输入序列中出现,就把输入序列中的8标记为不输出。
对数据6,卡拉兹猜想得到的中间数据是6 3 5 8 4 2 1,其中3、5、8在输入序列中出现,就把输入序列中的3、5、8标记为不输出。
对数据7,卡拉兹猜想得到的中间数据是7 11 17 26 13 20 10 5 8 4 2 1,其中11、5、8在输入序列中出现,就把输入序列中的11、5、8标记为不输出。
对数据8,卡拉兹猜想得到的中间数据是8 4 2 1,没有中间数据在输入序列中出现。
对数据11,卡拉兹猜想得到的中间数据是11 17 26 13 20 10 5 8 4 2 1,其中5、8在输入序列中出现,就把输入序列中的5、8标记为不输出。

最终从后往前输出所有标记仍为输出的数据,这里是7 6。
 

解题思路:首先还是进行(3n+1)猜想,但这一次我们要将出现过的所有数字保存下来,用来找出关键数字。将题目中给出的数字与出现过的数字进行比较,如果有一样的则将存储题目所给数字的数组元素赋值为零,最后将所有不为零的数组元素进行从大到小排序并输出。

AC代码

#include<stdio.h>
int main()
{  int n,i,j,k,l=0,m,z=0,r,v=0,q,w,e;
   int a[10000],b[1000],c[1000];//注意:给的数组大小不能太小,不然容易出现段错误!!
   scanf("%d",&i); 
   
   for(k=0;k<i;k++){        
   scanf("%d",&n);          //输入数字
   b[z]=n;
   z++;
   while(n!=1){            //把出现过的数字全部放入a数组
      if(n%2==0){j=1;}
      if(n%2==1){j=2;}
      switch(j){
          case 1:
                 n/=2;
                 a[l]=n;
		         l++;
		  break;
          case 2:
                 n=(3*n+1)/2;
                 a[l]=n;
			     l++;
	      break;
       }
   }
 }

   for(r=0;r<z;r++){           //循环找出关键数字
	   for(m=0;m<l;m++){ 
	   if(b[r]==a[m]){
	     b[r]=0;
		 break;
	   }
	   }
   }
   for(r=0;r<z;r++){        //把b数组中的关键数字复制进c数组
	   if(b[r]!=0){
		   c[v]=b[r];
           v++;
	   }
   }
	e=v;	 
   for(q=0;q<v;q++)         //通过循环把数组由大到小排列并输出
   {
		for(w=q+1;w<v;w++)
		{
			if(c[q]<c[w])
			{
				k=c[q];
				c[q]=c[w];
				c[w]=k;
			}
		}
		printf("%d%c",c[q],--e?' ':'\0');
	}
   
}

再来理理思路

  1. 输入数字,存入数组b中。
  2. 把每个数字的中间数据存在数组a中。
  3. 循环找出关键数字。
  4. 将数组b中的关键数字复制进入数组c中。
  5. 冒泡排序,由大到小输出数组c中的数据。
for(q=0;q<v;q++)         //通过循环把数组由大到小排列并输出
   {
		for(w=q+1;w<v;w++)
		{
			if(c[q]<c[w])
			{
				k=c[q];
				c[q]=c[w];
				c[w]=k;
			}
		}
		printf("%d%c",c[q],--e?' ':'\0');
	}

良苦用心:1.此冒泡排序(默认是升序)是降序排序,有些许不同,w=q+1算法更快捷

                  2.数字间用 1 个空格隔开,但一行中最后一个数字后没有空格,用三目运算符判断,岂不妙哉

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
### 回答1: 以下是C++代码: #include <iostream> using namespace std; int main() { int n; cin >> n; while (n != 1) { cout << n << " "; if (n % 2 == ) { n /= 2; } else { n = 3 * n + 1; } } cout << n << endl; return ; } 这段代码实现了“3n+1猜想”,输入一个正整数n,如果n是偶数,则将n除以2,否则将n乘以3再加1,直到n等于1为止。在每次操作后输出n的值。 ### 回答2: 题目描述:1005 继续(3n+1)猜想 这道题目让我们去思考著名的“3n+1”猜想,也称为“Collatz猜想”。所谓“3n+1”猜想,就是对于任意一个正整数n,若n为奇数,则将n变为3n+1,若n为偶数,则将n变为n/2。重复这个过程,最终都会得到1,也就是说,任何一个正整数都可以通过不停地进行“3n+1”的变化,最终得到1。 但是,不管从理论还是实际的考虑,都没有证明这个猜想成立。虽然经过无数次的尝试,这个猜想在极大程度上看来确实是正确的,但是人们还是无法确切地证明其正确性。 对于这个问题,我个人认为,我们可以从数学的角度来对其进行分析。首先,对于任何一个正整数n,我们都可以进行以下两种操作: ①.若n为奇数,则将n变为3n+1; ②.若n为偶数,则将n变为n/2。 我们可以通过考虑这两种操作对应的函数,进行进一步的分析。定义函数f(n)为将n变为3n+1的操作所得到的结果,函数g(n)为将n变为n/2的操作所得到的结果。不难发现,对于任何一个正整数n,我们都可以得到: ①.当n为奇数时,f(n)=3n+1为偶数,进而有g(f(n))=g(3n+1)=(3n+1)/2; ②.当n为偶数时,g(n)=n/2为偶数,进而有g(g(n))=g(n/2)=n/4。 综合以上两种情况,我们可以得到一个结论:如果不断地将n带入这两个函数中,最终都可以得到1。 但是,这个证明还不够严谨。比较困难的地方在于,我们无法排除一些特殊的数,其值会不停地循环,从而使得证明过程无法进行下去。针对这个问题,目前仍然没有有效的解决方法。因此,“3n+1”猜想依旧是未解决的数学难题之一。 不管怎样,这个猜想之所以引起人们无尽的探讨,主要还是因为它本身就涉及到了数学的深层次问题,不仅涉及到数论、代数学、纯粹数学等方面,还涉及到了计算机科学、信息论等实际应用领域。相信随着数学理论的不断发展,我们终将会对这个猜想有一个更加深刻的认识。 ### 回答3: 3n+1猜想是指:对于任意正整数n,如果n是偶数,则把它除以2,如果n是奇数,则把它乘以3再加1。得到的结果再按照同样的规则进行操作,直到最终得到1。据说,无论最初的n是什么,最终都会得到1,这就是3n+1猜想。 那么,问题来了,我们应该如何证明这个猜想呢?事实上,迄今为止,没有人能够证明这个猜想的正确性,也没有人能够找到反例来证明它的错误性。 针对这个猜想的研究早在20世纪初就已经开始了,但是至今仍然没有找到确凿的证据来证明它的正确性。有一些数学学者通过计算机模拟,发现对于n<268,可以得到1,这些数被称为3n+1问题的朴素范围,有些学者认为对于n的所有值都是成立的。 虽然没有找到真正的证据,但是3n+1猜想已经被广泛接受,并成为了数学上的一个有名的问题,它的重要性在于它为数学提供了一种新的、有趣的思考方式。通过研究这个问题,我们可以深入了解自然数的性质和规律,也可以得到更多的启示。因此,无论是从学术的角度还是从趣味的角度,3n+1猜想都是值得我们探索的问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.阿Q.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值