给定 N 个非 0 的个位数字,用其中任意 2 个数字都可以组合成 1 个 2 位的数字。要求所有可能组合出来的 2 位数字的和。例如给定 2、5、8,则可以组合出:25、28、52、58、82、85,它们的和为330。
输入格式:
输入在一行中先给出 N(1 < N < 10),随后给出 N 个不同的非 0 个位数字。数字间以空格分隔。
输出格式:
输出所有可能组合出来的2位数字的和。
输入样例:
3 2 8 5
输出样例:
330
AC代码1
#include <stdio.h>
#include <stdlib.h>
int main()
{
int n, i, a[11], sum, j;
scanf("%d", &n);
for (i = 0; i < n; i++)
scanf("%d", &a[i]);
sum = 0;
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
if (i != j)
sum = sum + a[i] * 10 + a[j];
}
}
printf("%d\n", sum);
return 0;
}
AC代码2
#include <stdio.h>
int main(){
int n,i;
scanf("%d",&n);
int num[100] = { 0 };
int sum = 0;
for (i = 0; i < n; i++){
scanf("%d",&num[i]);
sum = sum + num[i];
}
sum = sum * 11 * (n - 1);
printf("%d",sum);
return 0;
}
代码2思路:
这道题限定了新产生的数据是两位数,大大减少了这道题的难度,
sum = sum * 11 * (n - 1);这个公式的推导如下:
2 ,5,8 这3个数
25+28+52+58+82+85
=20+5+20+8+50+2+50+8+80+2+80+5
=(20+50+80+2+5+8)*2
=(210+510+8*10+2+5+8)*2
=(2+5+8)*(10+1)*2
=(2+5+8)112