数据结构与算法之优先队列(最大优先队列、最小优先队列、索引优先队列)

本文介绍了如何基于堆实现最大优先队列(MaxPriorityQueue)、最小优先队列(MinPriorityQueue),以及索引优先队列(IndexMinPriorityQueue),包括API设计、代码实现和堆操作原理。通过堆结构提高查找最大/最小元素的效率,并扩展支持通过索引访问和修改元素。
摘要由CSDN通过智能技术生成

优先队列前言

普通的队列是一种先进先出的数据结构,元素在队列尾追加,而从队列头删除。在某些情况下,我们可能需要找出队列中的最大值或者最小值,例如使用一个队列保存计算机的任务,一般情况下计算机的任务都是有优先级的,我们需要在这些计算机的任务中找出优先级最高的任务先执行,执行完毕后就需要把这个任务从队列中移除。普通的队列要完成这样的功能,需要每次遍历队列中的所有元素,比较并找出最大值,效率不是很高,这个时候,我们就可以使用一种特殊的队列来完成这种需求——优先队列。
在这里插入图片描述

优先队列按照其作用不同,可以分为以下两种:
最大优先队列:
可以获取并删除队列中最大的值
最小优先队列:
可以获取并删除队列中最小的值


1.1 最大优先队列

我们之前学习过堆,而堆这种结构是可以方便地删除最大的值,所以,接下来我们可以基于堆去实现最大优先队列。

1.1.1 最大优先队列API设计

类名MaxPriorityQueue<T extends Comparable<T>>
构造方法MaxPriorityQueue(int capacity):创建容量为capacity的MaxPriorityQueue对象
成员方法1.private boolean less(int i,int j):判断堆中索引i处的元素是否小于索引j处的元素
2.private void exch(int i,int j):交换堆中i索引和j索引处的值
3.public T delMax():删除队列中最大的元素,并返回这个最大元素
4.public void insert(T t):往队列中插入一个元素
5.private void swim(int k):使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
6.private void sink(int k):使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
7.public int size():获取队列中元素的个数
8.public boolean isEmpty():判断队列是否为空
成员变量1.private T[] imtes : 用来存储元素的数组
2.private int N:记录堆中元素的个数

1.1.2 最大优先队列代码实现

public class MaxPriorityQueue<T extends Comparable<T>> {
    //存储堆中的元素
    private T[] items;
    //记录堆中元素的个数
    private int N;

    public MaxPriorityQueue(int capacity) {
        this.items = (T[]) new Comparable[capacity+1];
        this.N= 0;
    }

    //获取队列中元素的个数
    public int size() {
        return N;
    }

    //判断队列是否为空
    public boolean isEmpty() {
        return N==0;
    }

    //判断堆中索引i处的元素是否小于索引j处的元素
    private boolean less(int i, int j) {
        return items[i].compareTo(items[j])<0;
    }

    //交换堆中i索引和j索引处的值
    private void exch(int i, int j) {
        T tmp = items[i];
        items[i] = items[j];
        items[j] = tmp;
    }

    //往堆中插入一个元素
    public void insert(T t) {
        items[++N] = t;
        swim(N);
    }

    //删除堆中最大的元素,并返回这个最大元素
    public T delMax() {
        T max = items[1];
        exch(1,N);
        N--;
        sink(1);
        return max;
    }

    //使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
    private void swim(int k) {
        while(k>1){
            if (less(k/2,k)){
                exch(k/2,k);
            }
            k = k/2;
        }
    }

    //使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
    private void sink(int k) {
        while(2*k<=N){
            int max;
            if (2*k+1<=N){
                if (less(2*k,2*k+1)){
                    max=2*k+1;
                }else{
                    max = 2*k;
                }
            }else {
                max = 2*k;
            }

            if (!less(k,max)){
                break;
            }
            exch(k,max);
            k = max;
        }
    }
}
//测试类
public class MaxPriorityQueueTest {
    public static void main(String[] args) {
        //创建优先队列
        MaxPriorityQueue<String> queue = new MaxPriorityQueue<>(10);

        //往队列中存储元素
        queue.insert("A");
        queue.insert("B");
        queue.insert("C");
        queue.insert("D");
        queue.insert("E");
        queue.insert("F");
        queue.insert("G");

        //通过循环从队列中获取最大的元素
        while(!queue.isEmpty()){
            String max = queue.delMax();
            System.out.print(max+" ");
        }
    }
}

1.2 最小优先队列

最小优先队列实现起来也比较简单,我们同样也可以基于堆来完成最小优先队列。

我们前面学习堆的时候,堆中存放数据元素的数组要满足都满足如下特性:
1. 最大的元素放在数组的索引 1 处。
2. 每个结点的数据总是大于等于它的两个子结点的数据。

在这里插入图片描述

其实我们之前实现的堆可以把它叫做最大堆,我们可以用相反的思想实现最小堆,让堆中存放数据元素的数组满足如下特性:

1. 最小的元素放在数组的索引 1 处。
2. 每个结点的数据总是小于等于它的两个子结点的数据。

这样我们就能快速地访问到堆中最小的数据。

1.2.1 最小优先队列API设计

类名MinPriorityQueue<T extends Comparable<T>>
构造方法MinPriorityQueue(int capacity):创建容量为capacity的MinPriorityQueue对象
成员方法1.private boolean less(int i,int j):判断堆中索引i处的元素是否小于索引j处的元素
2.private void exch(int i,int j):交换堆中i索引和j索引处的值
3.public T delMin():删除队列中最小的元素,并返回这个最小元素
4.public void insert(T t):往队列中插入一个元素
5.private void swim(int k):使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
6.private void sink(int k):使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
7.public int size():获取队列中元素的个数
8.public boolean isEmpty():判断队列是否为空
成员变量1.private T[] imtes : 用来存储元素的数组
2.private int N:记录堆中元素的个数

1.2.2 最小优先队列代码实现

public class MinPriorityQueue<T extends Comparable<T>> {
    //存储堆中的元素
    private T[] items;
    //记录堆中元素的个数
    private int N;

    public MinPriorityQueue(int capacity) {
        this.items = (T[]) new Comparable[capacity+1];
        this.N=0;
    }

    //获取队列中元素的个数
    public int size() {
        return N;
    }

    //判断队列是否为空
    public boolean isEmpty() {
        return N==0;
    }

    //判断堆中索引i处的元素是否小于索引j处的元素
    private boolean less(int i, int j) {
        return items[i].compareTo(items[j])<0;
    }

    //交换堆中i索引和j索引处的值
    private void exch(int i, int j) {
        T tmp = items[i];
        items[i] = items[j];
        items[j] = tmp;
    }

    //往堆中插入一个元素
    public void insert(T t) {
        items[++N] = t;
        swim(N);
    }

    //删除堆中最小的元素,并返回这个最小元素
    public T delMin() {
        T min = items[1];
        exch(1,N);
        N--;
        sink(1);
        return min;
    }

    //使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
    private void swim(int k) {
        //通过循环比较当前结点和其父结点的大小
        while(k>1){
            if (less(k,k/2)){
                exch(k,k/2);
            }
            k = k/2;
        }
    }

    //使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
    private void sink(int k) {
        //通过循环比较当前结点和其子结点中的较小值
        while(2*k<=N){
            //1.找到子结点中的较小值
            int min;
            if (2*k+1<=N){
                if (less(2*k, 2*k+1)){
                    min = 2*k;
                }else{
                    min = 2*k+1;
                }
            }else{
                min = 2*k;
            }

            //2.判断当前结点和较小值的大小
            if (less(k,min)){
                break;
            }
            exch(k,min);
            k = min;
        }
    }
}
//测试类
public class MinPriorityQueueTest {
    public static void main(String[] args) {
        //创建最小优先队列对象
        MinPriorityQueue<String> queue = new MinPriorityQueue<String>(10);
        //往队列中存数据
        queue.insert("G");
        queue.insert("F");
        queue.insert("E");
        queue.insert("D");
        queue.insert("C");
        queue.insert("B");
        queue.insert("A");

        //通过循环获取最小优先队列中的元素
        while(!queue.isEmpty()){
            String min = queue.delMin();
            System.out.print(min+" ");
        }
    }
}

1.3 索引优先队列

在之前实现的最大优先队列和最小优先队列,他们可以分别快速访问到队列中最大元素和最小元素,但是他们有一个缺点,就是没有办法通过索引访问已存在于优先队列中的对象,并更新它们。为了实现这个目的,在优先队列的基础上,学习一种新的数据结构,索引优先队列。接下来我们以最小索引优先队列举列。

1.3.1 索引优先队列实现思路

步骤一:
存储数据时,给每一个数据元素关联一个整数,例如insert(int k,T t),我们可以看做k是t关联的整数,那么我们的实现需要通过k这个值,快速获取到队列中t这个元素,此时有个k这个值需要具有唯一性。

最直观的想法就是我们可以用一个T[] items数组来保存数据元素,在insert(int k,T t)完成插入时,可以把k看做是 items数组的索引,把t元素放到items数组的索引k处,这样我们再根据k获取元素t时就很方便了,直接就可以拿到 items[k]即可。
在这里插入图片描述
步骤二:
步骤一完成后的结果,虽然我们给每个元素关联了一个整数,并且可以使用这个整数快速的获取到该元素,但是, items数组中的元素顺序是随机的,并不是堆有序的,所以,为了完成这个需求,我们可以增加一个数组 int[]pq,来保存每个元素在 items数组中的索引,pq 数组需要堆有序,也就是说,pq[1]对应的数据元素 items[pq[1]]要小于等于pq[2]和pq[3]对应的数据元素 items[pq[2]]和 items[pq[3]]。
目的之一:避免打乱原有数组与索引一一对应的关系
在这里插入图片描述
步骤三:
通过步骤二的分析,我们可以发现,其实我们通过上浮和下沉做堆调整的时候,其实调整的是 pq 数组。如果需要对 items中的元素进行修改,比如让 items[0]=“H”,那么很显然,我们需要对 pq 中的数据做堆调整,而且是调整 pq[9] 中元素的位置。但现在就会遇到一个问题,我们修改的是 items 数组中 0 索引处的值,如何才能快速的知道需要挑中pq[9]中元素的位置呢?

最直观的想法就是遍历pq数组,拿出每一个元素和 0 做比较,如果当前元素是 0 ,那么调整该索引处的元素即可,但是效率很低。

我们可以另外增加一个数组,int[] qp,用来存储pq的逆序。例如:
在pq数组中:pq[1]=6;
那么在qp数组中,把 6 作为索引, 1 作为值,结果是:qp[6]=1;
在这里插入图片描述
当有了 pq 数组后,如果我们修改 items[0]=“H”,那么就可以先通过索引 0 ,在qp数组中找到qp的索引:qp[0]=9,
那么直接调整pq[9]即可。

1.3.2 索引优先队列API设计

类名IndexMinPriorityQueue<T extends Comparable<T>>
构造方法IndexMinPriorityQueue(int capacity):创建容量为capacity的IndexMinPriorityQueue对象
成员方法1.private boolean less(int i,int j):判断堆中索引i处的元素是否小于索引j处的元素
2.private void exch(int i,int j):交换堆中i索引和j索引处的值
3.public int delMin():删除队列中最小的元素,并返回该元素关联的索引
4.public void insert(int i,T t):往队列中插入一个元素,并关联索引i
5.private void swim(int k):使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
6.private void sink(int k):使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
7.public int size():获取队列中元素的个数
8.public boolean isEmpty():判断队列是否为空
9.public boolean contains(int k):判断k对应的元素是否存在// 是否被关联
10.public void changeItem(int i, T t):把与索引i关联的元素修改为为t
11.public int minIndex():最小元素关联的索引
12.public void delete(int i):删除索引i关联的元素
成员变量1.private T[] imtes : 用来存储元素的数组
2.private int[] pq:保存每个元素在items数组中的索引,pq数组需要堆有序
3.private int [] qp:保存qp的逆序,pq的值作为索引,pq的索引作为值
4.private int N:记录堆中元素的个数

1.3.3 索引优先队列代码实现

public class IndexMinPriorityQueue<T extends Comparable<T>> {
    //存储堆中的元素
    private T[] items;
    //保存每个元素在items数组中的索引,pq数组需要堆有序
    private int[] pq;
    //保存qp的逆序,pq的值作为索引,pq的索引作为值
    private int[] qp;
    //记录堆中元素的个数
    private int N;

    public IndexMinPriorityQueue(int capacity) {
        this.items = (T[]) new Comparable[capacity+1];
        this.pq = new int[capacity+1];
        this.qp= new int[capacity+1];
        this.N = 0;

        //默认情况下,队列中没有存储任何数据,让qp中的元素都为-1;
        for (int i = 0; i < qp.length; i++) {
            qp[i]=-1;
        }
    }

    //获取队列中元素的个数
    public int size() {
        return N;
    }

    //判断队列是否为空
    public boolean isEmpty() {
        return N==0;
    }

    //判断堆中索引i处的元素是否小于索引j处的元素
    private boolean less(int i, int j) {
        return items[pq[i]].compareTo(items[pq[j]])<0;
    }

    //交换堆中i索引和j索引处的值
    private void exch(int i, int j) {
        //交换pq中的数据
        int tmp = pq[i];
        pq[i] = pq[j];
        pq[j] = tmp;

        //更新qp中的数据,完成真正的交换
        qp[pq[i]]=i;
        qp[pq[j]] =j;
    }

    //判断k对应的元素是否存在
    public boolean contains(int k) {
        return qp[k] !=-1;
    }

    //最小元素关联的索引
    public int minIndex() {
        return pq[1];
    }

    //往队列中插入一个元素,并关联索引i
    public void insert(int i, T t) {
        //判断i是否已经被关联,如果已经被关联,则不让插入
        if (contains(i)){
            return;
        }
        //元素个数+1
        N++;
        //把数据存储到items对应的i位置处
        items[i] = t;
        //把i存储到pq中
        pq[N] = i;
        //通过qp来记录pq中的i
        qp[i]=N;

        //通过堆上浮完成堆的调整
        swim(N);
    }

    //删除队列中最小的元素,并返回该元素关联的索引
    public int delMin() {
        //获取最小元素关联的索引
        int minIndex = pq[1];

        //交换pq中索引1处和最大索引处的元素
        exch(1,N);
        //删除qp中对应的内容
        qp[pq[N]] = -1;
        //删除pq最大索引处的内容
        pq[N]=-1;
        //删除items中对应的内容
        items[minIndex] = null;
        //元素个数-1
        N--;
        //下沉调整
        sink(1);

        return minIndex;
    }

    //删除索引i关联的元素
    public void delete(int i) {
        //找到i在pq中的索引
        int k = qp[i];

        //交换pq中索引k处的值和索引N处的值
        exch(k,N);
        //删除qp中的内容
        qp[pq[N]] = -1;
        //删除pq中的内容
        pq[N]=-1;
        //删除items中的内容
        items[k]=null;
        //元素的数量-1
        N--;
        //堆的调整
        sink(k);
        swim(k);
    }

    //把与索引i关联的元素修改为为t
    public void changeItem(int i, T t) {
        //修改items数组中i位置的元素为t
        items[i] = t;
        //找到i在pq中出现的位置
        int k = qp[i];
        //堆调整
        sink(k);
        swim(k);
    }


    //使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
    private void swim(int k) {
        while(k>1){
            if (less(k,k/2)){
                exch(k,k/2);
            }
            k = k/2;
        }
    }

    //使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
    private void sink(int k) {
        while(2*k<=N){
            //找到子结点中的较小值
            int min;
            if (2*k+1<=N){
                if (less(2*k,2*k+1)){
                    min = 2*k;
                }else{
                    min = 2*k+1;
                }
            }else{
                min = 2*k;
            }
            //比较当前结点和较小值
            if (less(k,min)){
                break;
            }
            exch(k,min);
            k = min;
        }
    }
}
// 测试类
public class IndexMinPriorityQueueTest {
    public static void main(String[] args) {
        //创建索引最小优先队列对象
        IndexMinPriorityQueue<String> queue = new IndexMinPriorityQueue<>(10);

        //往队列中添加元素
        queue.insert(0,"A");
        queue.insert(1,"C");
        queue.insert(2,"F");
        //测试修改
        queue.changeItem(2,"B");
        //测试删除
        while(!queue.isEmpty()){
            int index = queue.delMin();
            System.out.print(index+" ");
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值