目录
优先队列前言
普通的队列是一种先进先出的数据结构,元素在队列尾追加,而从队列头删除。在某些情况下,我们可能需要找出队列中的最大值或者最小值,例如使用一个队列保存计算机的任务,一般情况下计算机的任务都是有优先级的,我们需要在这些计算机的任务中找出优先级最高的任务先执行,执行完毕后就需要把这个任务从队列中移除。普通的队列要完成这样的功能,需要每次遍历队列中的所有元素,比较并找出最大值,效率不是很高,这个时候,我们就可以使用一种特殊的队列来完成这种需求——优先队列。
优先队列按照其作用不同,可以分为以下两种:
最大优先队列:
可以获取并删除队列中最大的值
最小优先队列:
可以获取并删除队列中最小的值
1.1 最大优先队列
我们之前学习过堆,而堆这种结构是可以方便地删除最大的值,所以,接下来我们可以基于堆去实现最大优先队列。
1.1.1 最大优先队列API设计
类名 | MaxPriorityQueue<T extends Comparable<T>> |
---|---|
构造方法 | MaxPriorityQueue(int capacity):创建容量为capacity的MaxPriorityQueue对象 |
成员方法 | 1.private boolean less(int i,int j):判断堆中索引i处的元素是否小于索引j处的元素
2.private void exch(int i,int j):交换堆中i索引和j索引处的值 3.public T delMax():删除队列中最大的元素,并返回这个最大元素 4.public void insert(T t):往队列中插入一个元素 5.private void swim(int k):使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置 6.private void sink(int k):使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置 7.public int size():获取队列中元素的个数 8.public boolean isEmpty():判断队列是否为空 |
成员变量 | 1.private T[] imtes : 用来存储元素的数组
2.private int N:记录堆中元素的个数 |
1.1.2 最大优先队列代码实现
public class MaxPriorityQueue<T extends Comparable<T>> {
//存储堆中的元素
private T[] items;
//记录堆中元素的个数
private int N;
public MaxPriorityQueue(int capacity) {
this.items = (T[]) new Comparable[capacity+1];
this.N= 0;
}
//获取队列中元素的个数
public int size() {
return N;
}
//判断队列是否为空
public boolean isEmpty() {
return N==0;
}
//判断堆中索引i处的元素是否小于索引j处的元素
private boolean less(int i, int j) {
return items[i].compareTo(items[j])<0;
}
//交换堆中i索引和j索引处的值
private void exch(int i, int j) {
T tmp = items[i];
items[i] = items[j];
items[j] = tmp;
}
//往堆中插入一个元素
public void insert(T t) {
items[++N] = t;
swim(N);
}
//删除堆中最大的元素,并返回这个最大元素
public T delMax() {
T max = items[1];
exch(1,N);
N--;
sink(1);
return max;
}
//使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
private void swim(int k) {
while(k>1){
if (less(k/2,k)){
exch(k/2,k);
}
k = k/2;
}
}
//使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
private void sink(int k) {
while(2*k<=N){
int max;
if (2*k+1<=N){
if (less(2*k,2*k+1)){
max=2*k+1;
}else{
max = 2*k;
}
}else {
max = 2*k;
}
if (!less(k,max)){
break;
}
exch(k,max);
k = max;
}
}
}
//测试类
public class MaxPriorityQueueTest {
public static void main(String[] args) {
//创建优先队列
MaxPriorityQueue<String> queue = new MaxPriorityQueue<>(10);
//往队列中存储元素
queue.insert("A");
queue.insert("B");
queue.insert("C");
queue.insert("D");
queue.insert("E");
queue.insert("F");
queue.insert("G");
//通过循环从队列中获取最大的元素
while(!queue.isEmpty()){
String max = queue.delMax();
System.out.print(max+" ");
}
}
}
1.2 最小优先队列
最小优先队列实现起来也比较简单,我们同样也可以基于堆来完成最小优先队列。
我们前面学习堆的时候,堆中存放数据元素的数组要满足都满足如下特性:
1. 最大的元素放在数组的索引 1 处。
2. 每个结点的数据总是大于等于它的两个子结点的数据。
其实我们之前实现的堆可以把它叫做最大堆,我们可以用相反的思想实现最小堆,让堆中存放数据元素的数组满足如下特性:
1. 最小的元素放在数组的索引 1 处。
2. 每个结点的数据总是小于等于它的两个子结点的数据。
这样我们就能快速地访问到堆中最小的数据。
1.2.1 最小优先队列API设计
类名 | MinPriorityQueue<T extends Comparable<T>> |
---|---|
构造方法 | MinPriorityQueue(int capacity):创建容量为capacity的MinPriorityQueue对象 |
成员方法 | 1.private boolean less(int i,int j):判断堆中索引i处的元素是否小于索引j处的元素
2.private void exch(int i,int j):交换堆中i索引和j索引处的值 3.public T delMin():删除队列中最小的元素,并返回这个最小元素 4.public void insert(T t):往队列中插入一个元素 5.private void swim(int k):使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置 6.private void sink(int k):使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置 7.public int size():获取队列中元素的个数 8.public boolean isEmpty():判断队列是否为空 |
成员变量 | 1.private T[] imtes : 用来存储元素的数组
2.private int N:记录堆中元素的个数 |
1.2.2 最小优先队列代码实现
public class MinPriorityQueue<T extends Comparable<T>> {
//存储堆中的元素
private T[] items;
//记录堆中元素的个数
private int N;
public MinPriorityQueue(int capacity) {
this.items = (T[]) new Comparable[capacity+1];
this.N=0;
}
//获取队列中元素的个数
public int size() {
return N;
}
//判断队列是否为空
public boolean isEmpty() {
return N==0;
}
//判断堆中索引i处的元素是否小于索引j处的元素
private boolean less(int i, int j) {
return items[i].compareTo(items[j])<0;
}
//交换堆中i索引和j索引处的值
private void exch(int i, int j) {
T tmp = items[i];
items[i] = items[j];
items[j] = tmp;
}
//往堆中插入一个元素
public void insert(T t) {
items[++N] = t;
swim(N);
}
//删除堆中最小的元素,并返回这个最小元素
public T delMin() {
T min = items[1];
exch(1,N);
N--;
sink(1);
return min;
}
//使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
private void swim(int k) {
//通过循环比较当前结点和其父结点的大小
while(k>1){
if (less(k,k/2)){
exch(k,k/2);
}
k = k/2;
}
}
//使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
private void sink(int k) {
//通过循环比较当前结点和其子结点中的较小值
while(2*k<=N){
//1.找到子结点中的较小值
int min;
if (2*k+1<=N){
if (less(2*k, 2*k+1)){
min = 2*k;
}else{
min = 2*k+1;
}
}else{
min = 2*k;
}
//2.判断当前结点和较小值的大小
if (less(k,min)){
break;
}
exch(k,min);
k = min;
}
}
}
//测试类
public class MinPriorityQueueTest {
public static void main(String[] args) {
//创建最小优先队列对象
MinPriorityQueue<String> queue = new MinPriorityQueue<String>(10);
//往队列中存数据
queue.insert("G");
queue.insert("F");
queue.insert("E");
queue.insert("D");
queue.insert("C");
queue.insert("B");
queue.insert("A");
//通过循环获取最小优先队列中的元素
while(!queue.isEmpty()){
String min = queue.delMin();
System.out.print(min+" ");
}
}
}
1.3 索引优先队列
在之前实现的最大优先队列和最小优先队列,他们可以分别快速访问到队列中最大元素和最小元素,但是他们有一个缺点,就是没有办法通过索引访问已存在于优先队列中的对象,并更新它们。为了实现这个目的,在优先队列的基础上,学习一种新的数据结构,索引优先队列。接下来我们以最小索引优先队列举列。
1.3.1 索引优先队列实现思路
步骤一:
存储数据时,给每一个数据元素关联一个整数,例如insert(int k,T t),我们可以看做k是t关联的整数,那么我们的实现需要通过k这个值,快速获取到队列中t这个元素,此时有个k这个值需要具有唯一性。
最直观的想法就是我们可以用一个T[] items数组来保存数据元素,在insert(int k,T t)完成插入时,可以把k看做是 items数组的索引,把t元素放到items数组的索引k处,这样我们再根据k获取元素t时就很方便了,直接就可以拿到 items[k]即可。
步骤二:
步骤一完成后的结果,虽然我们给每个元素关联了一个整数,并且可以使用这个整数快速的获取到该元素,但是, items数组中的元素顺序是随机的,并不是堆有序的,所以,为了完成这个需求,我们可以增加一个数组 int[]pq,来保存每个元素在 items数组中的索引,pq 数组需要堆有序,也就是说,pq[1]对应的数据元素 items[pq[1]]要小于等于pq[2]和pq[3]对应的数据元素 items[pq[2]]和 items[pq[3]]。
目的之一:避免打乱原有数组与索引一一对应的关系
步骤三:
通过步骤二的分析,我们可以发现,其实我们通过上浮和下沉做堆调整的时候,其实调整的是 pq 数组。如果需要对 items中的元素进行修改,比如让 items[0]=“H”,那么很显然,我们需要对 pq 中的数据做堆调整,而且是调整 pq[9] 中元素的位置。但现在就会遇到一个问题,我们修改的是 items 数组中 0 索引处的值,如何才能快速的知道需要挑中pq[9]中元素的位置呢?
最直观的想法就是遍历pq数组,拿出每一个元素和 0 做比较,如果当前元素是 0 ,那么调整该索引处的元素即可,但是效率很低。
我们可以另外增加一个数组,int[] qp,用来存储pq的逆序。例如:
在pq数组中:pq[1]=6;
那么在qp数组中,把 6 作为索引, 1 作为值,结果是:qp[6]=1;
当有了 pq 数组后,如果我们修改 items[0]=“H”,那么就可以先通过索引 0 ,在qp数组中找到qp的索引:qp[0]=9,
那么直接调整pq[9]即可。
1.3.2 索引优先队列API设计
类名 | IndexMinPriorityQueue<T extends Comparable<T>> |
---|---|
构造方法 | IndexMinPriorityQueue(int capacity):创建容量为capacity的IndexMinPriorityQueue对象 |
成员方法 | 1.private boolean less(int i,int j):判断堆中索引i处的元素是否小于索引j处的元素
2.private void exch(int i,int j):交换堆中i索引和j索引处的值 3.public int delMin():删除队列中最小的元素,并返回该元素关联的索引 4.public void insert(int i,T t):往队列中插入一个元素,并关联索引i 5.private void swim(int k):使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置 6.private void sink(int k):使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置 7.public int size():获取队列中元素的个数 8.public boolean isEmpty():判断队列是否为空 9.public boolean contains(int k):判断k对应的元素是否存在// 是否被关联 10.public void changeItem(int i, T t):把与索引i关联的元素修改为为t 11.public int minIndex():最小元素关联的索引 12.public void delete(int i):删除索引i关联的元素 |
成员变量 | 1.private T[] imtes : 用来存储元素的数组
2.private int[] pq:保存每个元素在items数组中的索引,pq数组需要堆有序 3.private int [] qp:保存qp的逆序,pq的值作为索引,pq的索引作为值 4.private int N:记录堆中元素的个数 |
1.3.3 索引优先队列代码实现
public class IndexMinPriorityQueue<T extends Comparable<T>> {
//存储堆中的元素
private T[] items;
//保存每个元素在items数组中的索引,pq数组需要堆有序
private int[] pq;
//保存qp的逆序,pq的值作为索引,pq的索引作为值
private int[] qp;
//记录堆中元素的个数
private int N;
public IndexMinPriorityQueue(int capacity) {
this.items = (T[]) new Comparable[capacity+1];
this.pq = new int[capacity+1];
this.qp= new int[capacity+1];
this.N = 0;
//默认情况下,队列中没有存储任何数据,让qp中的元素都为-1;
for (int i = 0; i < qp.length; i++) {
qp[i]=-1;
}
}
//获取队列中元素的个数
public int size() {
return N;
}
//判断队列是否为空
public boolean isEmpty() {
return N==0;
}
//判断堆中索引i处的元素是否小于索引j处的元素
private boolean less(int i, int j) {
return items[pq[i]].compareTo(items[pq[j]])<0;
}
//交换堆中i索引和j索引处的值
private void exch(int i, int j) {
//交换pq中的数据
int tmp = pq[i];
pq[i] = pq[j];
pq[j] = tmp;
//更新qp中的数据,完成真正的交换
qp[pq[i]]=i;
qp[pq[j]] =j;
}
//判断k对应的元素是否存在
public boolean contains(int k) {
return qp[k] !=-1;
}
//最小元素关联的索引
public int minIndex() {
return pq[1];
}
//往队列中插入一个元素,并关联索引i
public void insert(int i, T t) {
//判断i是否已经被关联,如果已经被关联,则不让插入
if (contains(i)){
return;
}
//元素个数+1
N++;
//把数据存储到items对应的i位置处
items[i] = t;
//把i存储到pq中
pq[N] = i;
//通过qp来记录pq中的i
qp[i]=N;
//通过堆上浮完成堆的调整
swim(N);
}
//删除队列中最小的元素,并返回该元素关联的索引
public int delMin() {
//获取最小元素关联的索引
int minIndex = pq[1];
//交换pq中索引1处和最大索引处的元素
exch(1,N);
//删除qp中对应的内容
qp[pq[N]] = -1;
//删除pq最大索引处的内容
pq[N]=-1;
//删除items中对应的内容
items[minIndex] = null;
//元素个数-1
N--;
//下沉调整
sink(1);
return minIndex;
}
//删除索引i关联的元素
public void delete(int i) {
//找到i在pq中的索引
int k = qp[i];
//交换pq中索引k处的值和索引N处的值
exch(k,N);
//删除qp中的内容
qp[pq[N]] = -1;
//删除pq中的内容
pq[N]=-1;
//删除items中的内容
items[k]=null;
//元素的数量-1
N--;
//堆的调整
sink(k);
swim(k);
}
//把与索引i关联的元素修改为为t
public void changeItem(int i, T t) {
//修改items数组中i位置的元素为t
items[i] = t;
//找到i在pq中出现的位置
int k = qp[i];
//堆调整
sink(k);
swim(k);
}
//使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
private void swim(int k) {
while(k>1){
if (less(k,k/2)){
exch(k,k/2);
}
k = k/2;
}
}
//使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
private void sink(int k) {
while(2*k<=N){
//找到子结点中的较小值
int min;
if (2*k+1<=N){
if (less(2*k,2*k+1)){
min = 2*k;
}else{
min = 2*k+1;
}
}else{
min = 2*k;
}
//比较当前结点和较小值
if (less(k,min)){
break;
}
exch(k,min);
k = min;
}
}
}
// 测试类
public class IndexMinPriorityQueueTest {
public static void main(String[] args) {
//创建索引最小优先队列对象
IndexMinPriorityQueue<String> queue = new IndexMinPriorityQueue<>(10);
//往队列中添加元素
queue.insert(0,"A");
queue.insert(1,"C");
queue.insert(2,"F");
//测试修改
queue.changeItem(2,"B");
//测试删除
while(!queue.isEmpty()){
int index = queue.delMin();
System.out.print(index+" ");
}
}
}