线性求前n个数的逆元

求一个数模p的逆元我们可以用费马小定理加快速幂求解或者用扩展欧几里得来求解,他们的复杂度都是o(log(n))的,都是很优秀的求法。但是当我们要求前n个数的逆元时就需要o(nlog(n))的复杂度了,如果我们可以通过第i个数前面的数的逆元来推出第i个数的逆元的话那么我们就可以线性的以o(n)的时间复杂度来求出前n个数的逆元了。证明如下。
设t=p/i,k=p%i

可知t*i+k≡0(mod p)

等式两边同时乘上inv(i)与inv(k)可得

t*inv(k)+inv(i)≡0(mod p)

所以

inv(i)=(p-p/i)*inv(p%i)%p
这个代码也很简单实际内容就一行公式。

#include<iostream>
#include<algorithm>
using namespace std;
const int N=20000999;
long long inv[N];
int main(){
    long long p;
    int n;
    inv[1]=1;
    scanf("%d%lld",&n,&p);
    printf("%lld\n",inv[1]);
    for(int i=2;i<=n;i++){
        inv[i]=(p-p/i)*inv[p%i]%p;
        printf("%lld\n",inv[i]);
    }
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值