电话表-Tire树

本文解析了一段C++代码,用于判断给定的n个短数字串中是否存在两个字符串,其中一个为另一个的前缀。通过构建树状结构和布尔数组,有效地解决了字符串匹配问题。

给定n个长度不超过10的数字串,问其中是否存在两个数字串S,T,使得S是T的前缀。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define de(x) cout<<x<<" ";
#define sf(x) scanf("%d",&x);
#define Pu puts("");
const int N=1e5+10;
int son[N][15];//相当于是一个树枝节点分10叉,每个节点又可以分10叉
bool f[N];//记录每个字符串的尾部节点,便于判断该串是否覆盖另外的串
char arr[15];
int n,m;
int id;//给每个节点编号
int insert(char s[]){
    int len=strlen(s);
    int p=0;

    //令该串为a
    bool ok_new=false;//判断a是否为其它串的前缀
    bool ok_cover=false;//判断其他串是否为a的前缀
    for(int i=0;i<len;i++){
        int t=s[i]-'0';
        if(son[p][t]==0){
            son[p][t]=++id;
            ok_new=true;
        }
        p=son[p][t];
        //原本这里我不明白,以为只要ok_new为1时
        //那么说明一定另外分叉了,那么不论ok_cover为0或1
        //都表示不存在前缀现象

        //解释:当ok_cover为1时,说明一定存在串b,使得
        //b是该串a的前缀,因为f[i]表示某个字符串的最后一个元素
        //并且代码中,找f是通过数组索引的方式,不可能存在交叉的情况
        //那么只要ok_cover为1,那么必然存在前缀现象
        if(f[p]) ok_cover=true;
    }
    f[p]=true;

    return ok_new&&!ok_cover;
}
int main(){
    int T;cin>>T;
    while(T--){
        cin>>n;
        memset(f,false,sizeof(f));
        memset(son,0,sizeof(son));
        id=0;
        int ans=1;
        for(int i=1;i<=n;i++){
            scanf("%s",arr);
            if(!insert(arr)) ans=0;
        }
        if(ans==0) printf("NO\n");
        else printf("YES\n");
    }
    return 0;
}
07-01
### Trie(字典)的实现原理与应用场景 Trie,又称前缀或字典,是一种用于处理字符串的高效数据结构。它通过共享相同前缀的字符来组织节点,从而加快字符串匹配的速度。Trie的核心思想是利用公共前缀减少必要的比较操作,因此在处理大量字符串时具有较高的效率。 #### 实现原理 Trie的基本结构由一系列节点组成,每个节点代一个字符。根节点通常是一个空字符,而从根节点出发的路径则构成一个完整的字符串[^1]。每个节点可以有多个子节点,这些子节点同的字符。当遍历到某个特定字符时,可以通过查找其对应的子节点继续向下延伸。如果某个节点标志着一个完整字符串的结束,则标记为终止字符[^3]。 以下是一个简单的Java实现示例: ```java public class TrieNode { public char data; public TrieNode[] children = new TrieNode[26]; public boolean isEndOfWord; public TrieNode(char data) { this.data = data; } } public class Trie { private TrieNode root = new TrieNode('/'); // 插入字符串到Trie中 public void insert(String word) { TrieNode node = root; for (int i = 0; i < word.length(); i++) { char ch = word.charAt(i); int index = ch - 'a'; if (node.children[index] == null) { node.children[index] = new TrieNode(ch); } node = node.children[index]; } node.isEndOfWord = true; } // 在Trie中查找字符串 public boolean search(String word) { TrieNode node = root; for (int i = 0; i < word.length(); i++) { char ch = word.charAt(i); int index = ch - 'a'; if (node.children[index] == null) { return false; } node = node.children[index]; } return node != null && node.isEndOfWord; } } ``` 上述代码展示了如何创建一个包含插入和搜索功能的简单Trie。插入函数会逐个字符检查并构建路径;若遇到存在的字符节点,则新建该节点。搜索函数则沿着已有的路径进行匹配,并判断最终是否到达了一个有效单词的结尾[^3]。 #### 应用场景 - **自动补全**:搜索引擎常常使用Trie来提供用户输入查询时的建议列。这种结构使得系统能够迅速找到所有以当前输入作为前缀的候选词。 - **拼写检查**:Trie可用于快速验证输入的单词是否存在以及推荐正确的拼写形式。 - **IP路由**:在网络通信中,Trie可以帮助路由器高效地确定最佳转发接口,特别是在基于最长前缀匹配的原则下。 - **词频统计**:Trie适合用来统计一组文本中的词汇出现频率,因为它可以轻松跟踪每条路径上经过了多少次访[^4]。 此外,尽管Trie可能占用较多内存,但它提供了非常快的操作速度,特别是对于那些需要频繁执行插入、删除及查找操作的应用场合来说尤为适用[^2]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值