买礼物
题目描述
又到了一年一度的明明生日了,明明想要买 B B B 样东西,巧的是,这 B B B 样东西价格都是 A A A 元。
但是,商店老板说最近有促销活动,也就是:
如果你买了第 I I I 样东西,再买第 J J J 样,那么就可以只花 K I , J K_{I,J} KI,J 元,更巧的是, K I , J K_{I,J} KI,J 竟然等于 K J , I K_{J,I} KJ,I。
现在明明想知道,他最少要花多少钱。
输入格式
第一行两个整数, A , B A,B A,B。
接下来 B B B 行,每行 B B B 个数,第 I I I 行第 J J J 个为 K I , J K_{I,J} KI,J。
我们保证 K I , J = K J , I K_{I,J}=K_{J,I} KI,J=KJ,I 并且 K I , I = 0 K_{I,I}=0 KI,I=0。
特别的,如果 K I , J = 0 K_{I,J}=0 KI,J=0,那么表示这两样东西之间不会导致优惠。
输出格式
一个整数,为最小要花的钱数。
样例 #1
样例输入 #1
1 1
0
样例输出 #1
1
样例 #2
样例输入 #2
3 3
0 2 4
2 0 2
4 2 0
样例输出 #2
7
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define de(x) cout<<x<<" ";
#define sf(x) scanf("%d",&x);
#define Pu puts("");
const int N=5e2+10,M=2e5+10;
int n,m;
ll ans;
int cnt;//注意本题需要考虑最小生成树还没有完全建好
//但是由于此时最小的树边权重已经大于了直接购买这个物品的价钱
//那么我们直接跳出kruskal函数,选择在没有优惠的情况下购买本物品
int f[N];
struct E{
int x,y,u;
};
struct cmp{
bool operator()(E a,E b){
return a.u>b.u;
}
};
priority_queue<E,vector<E>,cmp>q;
int find(int x){
if(x==f[x]) return x;
return f[x]=find(f[x]);
}
void kruskal(){
for(int i=1;i<=n;i++) f[i]=i;
int x,y,z;
int a,b;
while(!q.empty()){
x=q.top().x;y=q.top().y;z=q.top().u;q.pop();
if(z>m) return ;
a=find(x);b=find(y);
if(a!=b){
if(a>b) f[a]=b;
else f[b]=a;
ans+=z;
cnt--;
if(cnt==0) return ;
}
}
}
int main(){
cin>>m>>n;
int x;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
sf(x)
if(i<j){
if(x==0) q.push(E{i,j,m});
else q.push(E{i,j,x});
}
}
}
ans=m;cnt=n-1;
kruskal();
if(cnt!=0) ans+=cnt*m;
printf("%lld\n",ans);
return 0;
}