P1194 买礼物-kruskal(优先队列+并查集)

买礼物

题目描述

又到了一年一度的明明生日了,明明想要买 B B B 样东西,巧的是,这 B B B 样东西价格都是 A A A 元。

但是,商店老板说最近有促销活动,也就是:

如果你买了第 I I I 样东西,再买第 J J J 样,那么就可以只花 K I , J K_{I,J} KI,J 元,更巧的是, K I , J K_{I,J} KI,J 竟然等于 K J , I K_{J,I} KJ,I

现在明明想知道,他最少要花多少钱。

输入格式

第一行两个整数, A , B A,B A,B

接下来 B B B 行,每行 B B B 个数,第 I I I 行第 J J J 个为 K I , J K_{I,J} KI,J

我们保证 K I , J = K J , I K_{I,J}=K_{J,I} KI,J=KJ,I 并且 K I , I = 0 K_{I,I}=0 KI,I=0

特别的,如果 K I , J = 0 K_{I,J}=0 KI,J=0,那么表示这两样东西之间不会导致优惠。

输出格式

一个整数,为最小要花的钱数。

样例 #1

样例输入 #1

1 1
0

样例输出 #1

1

样例 #2

样例输入 #2

3 3
0 2 4
2 0 2
4 2 0

样例输出 #2

7
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define de(x) cout<<x<<" ";
#define sf(x) scanf("%d",&x);
#define Pu puts("");
const int N=5e2+10,M=2e5+10;
int n,m;
ll ans;
int cnt;//注意本题需要考虑最小生成树还没有完全建好
//但是由于此时最小的树边权重已经大于了直接购买这个物品的价钱
//那么我们直接跳出kruskal函数,选择在没有优惠的情况下购买本物品
int f[N];
struct E{
    int x,y,u;
};
struct cmp{
    bool operator()(E a,E b){
        return a.u>b.u;
    }
};
priority_queue<E,vector<E>,cmp>q;
int find(int x){
    if(x==f[x]) return x;
    return f[x]=find(f[x]);
}
void kruskal(){
    for(int i=1;i<=n;i++) f[i]=i;
    int x,y,z;
    int a,b;
    while(!q.empty()){
        x=q.top().x;y=q.top().y;z=q.top().u;q.pop();
        if(z>m) return ;
        a=find(x);b=find(y);
        if(a!=b){
            if(a>b) f[a]=b;
            else f[b]=a;
            ans+=z;
            cnt--;
            if(cnt==0) return ;
        }
    }
}
int main(){
    cin>>m>>n;
    int x;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            sf(x)
            if(i<j){
                if(x==0) q.push(E{i,j,m});
                else q.push(E{i,j,x});
            }
        }
    }
    ans=m;cnt=n-1;
    kruskal();
    if(cnt!=0) ans+=cnt*m;
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值