BloodMNIST数据集在vgg网络下的表现

一、获取数据集

下载和读取数据集

MedMNIST网站中的zenodo数据库中下载BloodMNIST数据集,该数据集是在显微镜下得到的,数据集有八种标签,因此可以用于多分类任务。
下载数据集后可以发现数据集格式是.npz,其是一个numpy格式的压缩文件,将文件放于项目文件同一文件夹中,使用np.load()加载数据集。


在这里插入图片描述

datas = np.load('bloodmnist.npz')
print(datas.files)

[‘train_images’, ‘train_labels’, ‘val_images’, ‘val_labels’, ‘test_images’, ‘test_labels’]

数据集已经被分成相应的文件,声明变量获取所需文件(这里只简单使用了训练集和测试集)

train_images = (datas['train_images'])
train_labels = (datas['train_labels'])
......

创建训练数据和测试数据迭代器

首先查看train_X 就是训练数据的大小形状
在这里插入图片描述
为了让数据在网络中传递更有效和方便计算,将数据表示范围限制在0到1之间。正确的操作方法应该是我们首先将数据类型转化为float,再将其/255。

之后使用Dataset里面的from_tensor_slieces()函数创建迭代器。

train_X=train_images
train_y=train_labels
train_X = train_X.astype(np.float)
train_X /= 255.0
train_iter = tf.data.Dataset.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值