[摘要翻译]3565Probabilistic Ranking-Aware Ensembles for Enhanced Object Detections

Probabilistic Ranking-Aware Ensembles for Enhanced Object Detections

Abstract:模型集成正在成为提高目标检测性能的最有效的方法之一,该方法已经针对单个检测器进行了优化。传统的方法直接熔合边界盒,但在结合探测器时通常没有考虑方案的质量。这就产生了一个新的问题,即探测器相似度的信度差异。置信度对单个探测器的影响很小,但对集成探测器有显著影响。为了解决这一问题,我们提出了一种新的集合称为概率排序感知集合(PRAE),它可以提高检测器对边界盒的置信度。通过同时考虑同一评价集中的类别和位置,我们得到了基于统计概率的更可靠的置信度。然后,我们可以对检测到的边界盒进行排序,以便进行组装。我们还引入了一种banddit方法来解决由于需要在不同置信水平上处理不同数量的盒而引起的置信不平衡问题。在集成学习中,我们使用基于PRAE的非最大抑制(P-NMS)方法来代替传统的nms方法。在PASCAL VOC和COCO2017数据集上的实验表明,我们的PRAE方法的性能一直显著优于先进方法。

内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值