Probabilistic Ranking-Aware Ensembles for Enhanced Object Detections
Abstract:模型集成正在成为提高目标检测性能的最有效的方法之一,该方法已经针对单个检测器进行了优化。传统的方法直接熔合边界盒,但在结合探测器时通常没有考虑方案的质量。这就产生了一个新的问题,即探测器相似度的信度差异。置信度对单个探测器的影响很小,但对集成探测器有显著影响。为了解决这一问题,我们提出了一种新的集合称为概率排序感知集合(PRAE),它可以提高检测器对边界盒的置信度。通过同时考虑同一评价集中的类别和位置,我们得到了基于统计概率的更可靠的置信度。然后,我们可以对检测到的边界盒进行排序,以便进行组装。我们还引入了一种banddit方法来解决由于需要在不同置信水平上处理不同数量的盒子而引起的置信不平衡问题。在集成学习中,我们使用基于PRAE的非最大抑制(P-NMS)方法来代替传统的nms方法。在PASCAL VOC和COCO2017数据集上的实验表明,我们的PRAE方法的性能一直显著优于最先进的方法。