[摘要翻译]3565Probabilistic Ranking-Aware Ensembles for Enhanced Object Detections

Probabilistic Ranking-Aware Ensembles for Enhanced Object Detections

Abstract:模型集成正在成为提高目标检测性能的最有效的方法之一,该方法已经针对单个检测器进行了优化。传统的方法直接熔合边界盒,但在结合探测器时通常没有考虑方案的质量。这就产生了一个新的问题,即探测器相似度的信度差异。置信度对单个探测器的影响很小,但对集成探测器有显著影响。为了解决这一问题,我们提出了一种新的集合称为概率排序感知集合(PRAE),它可以提高检测器对边界盒的置信度。通过同时考虑同一评价集中的类别和位置,我们得到了基于统计概率的更可靠的置信度。然后,我们可以对检测到的边界盒进行排序,以便进行组装。我们还引入了一种banddit方法来解决由于需要在不同置信水平上处理不同数量的盒而引起的置信不平衡问题。在集成学习中,我们使用基于PRAE的非最大抑制(P-NMS)方法来代替传统的nms方法。在PASCAL VOC和COCO2017数据集上的实验表明,我们的PRAE方法的性能一直显著优于先进方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值