开源语音文本自动对齐模型:Llama-OuteTTS-1.0-1B

OuteTTS 1.0 介绍与使用指南

1. 重要采样考虑

  • 重复惩罚机制:OuteTTS 1.0 要求对最近的64个token应用重复惩罚,而不是对整个上下文窗口。对整个上下文窗口进行惩罚会导致输出质量下降。
  • 推荐工具:llama.cpp 和 EXL2 提供了可靠的输出质量,而 Transformers 不支持窗口采样。为了解决这一问题,作者在 OuteTTS 库中为 Hugging Face Transformers 后端实现了窗口化重复惩罚。
  • 效果提升:这种改进显著提高了语音合成和声音克隆的输出质量,使其与 llama.cpp 的结果相当。

2. 版本更新亮点

  • 自动文本对齐:模型内部实现了单词级别的文本对齐,无需预处理。只需输入原始文本,模型会自动处理。
  • 多语言支持:直接支持多种语言的文本,无需罗马化。支持的语言包括英语、阿拉伯语、中文、法语、德语等。
  • 元数据增强:更新的提示系统在全局和单词级别添加了额外的元数据(时间、能量、频谱质心、音高),提升了语音流和合成质量。
  • 音频编码器:集成了 IBM 研究的 DAC 音频编码器,利用两个码本进行高质量音频重建。
  • 性能权衡:音频保真度的提升使生成速率从每秒75个token提高到150个token,优先考虑质量,尤其是多语言应用。
  • 单次声音克隆:仅需约10秒的参考音频即可生成准确的声音表示。
  • 精度提升:新编码器和额外训练元数据的加入使声音克隆更加自然和精确。

3. 多语言能力

  • 支持的语言
    • 高训练数据语言:英语、阿拉伯语、中文、荷兰语、法语、德语、意大利语、日语、韩语、立陶宛语、俄语、西班牙语。
    • 中等训练数据语言:葡萄牙语、白俄罗斯语、孟加拉语、格鲁吉亚语、匈牙利语、拉脱维亚语、波斯语/法语、波兰语、斯瓦希里语、泰米尔语、乌克兰语。
    • 未训练语言:模型可以生成未训练语言的语音,但效果可能不理想。
  • 直接数字输入:支持多语言数字输入,无需文本转换。模型会根据主导语言选择发音方式。

4. 安装与使用方法

  • 安装:按照官方提供的安装说明进行操作。
  • 基本使用方法
    import outetts
    
    # 初始化接口
    interface = outetts.Interface(
        config=outetts.ModelConfig.auto_config(
            model=outetts.Models.VERSION_1_0_SIZE_1B,
            backend=outetts.Backend.LLAMACPP,
            quantization=outetts.LlamaCppQuantization.FP16
        )
    )
    
    # 加载默认说话者配置
    speaker = interface.load_default_speaker("EN-FEMALE-1-NEUTRAL")
    
    # 生成语音
    output = interface.generate(
        config=outetts.GenerationConfig(
            text="Hello, how are you doing?",
            generation_type=outetts.GenerationType.CHUNKED,
            speaker=speaker,
            sampler_config=outetts.SamplerConfig(temperature=0.4)
        )
    )
    
    # 保存到文件
    output.save("output.wav")
    
    

5. 模型规格与训练参数

  • 训练数据:基于约60,000小时的音频数据进行训练。

  • 上下文窗口:支持最大8,192个token的上下文窗口。

  • 优化器:使用 AdamW 优化器。

  • 学习率

    • 最大学习率:3e-4

    • 最小学习率:3e-5

  • 批量大小:1百万个token。

  • 预训练与微调

    • 基于 Llama 3.2-1B 模型进行预训练和微调。

    • 许可证:初始 Llama 3.2 组件遵循社区许可协议,持续预训练和微调遵循 CC-BY-NC-SA-4.0。

6.特点

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值